课程:深度学习
授课教师:万方
授课团队:徐俊刚、张新峰、万方
地点:中国科学院大学雁栖湖校区
考试时间:2025年5月14日
网安学院24级 杨桂淼
名词解释
1. 残差网络
2. 自编码器
3. 感受野
4. LSTM
5. 过拟合?卷积神经网络?(最后一个有点记不清了...)
简答题
1. 简述生成对抗网络(GAN)的主要组成,以及训练过程
2. 简述语言模型的发展历程
计算题
1. 卷积计算
请使用卷积神经网络中的Same卷积计算下图所示输入矩阵和卷积核对应的特征图,卷积步长为1,激活函数采用ReLU。
2. 多分类任务中,某个样本的期望输出为(0,0,0,1),两个模型A和B都采用交叉熵作为损失函数,针对该样本的实际输出分别为(In20,In40,In60,In80)、(In10,In30,ln50,In90),采用Softmax 函数对输出进行归一化并计算两个模型的交叉熵,说明哪个模型更好。提示:lg2≈0.301,lg3≈0.477。
设计题
1. 请你设计一个图片描述模型,要求有自己的新想法、新见解