国科大深度学习期末考试原题回忆版

课程:深度学习

授课教师:万方

授课团队:徐俊刚、张新峰、万方

地点:中国科学院大学雁栖湖校区

考试时间:2025年5月14日

网安学院24级 杨桂淼

名词解释

1. 残差网络

2. 自编码器

3. 感受野

4. LSTM

5. 过拟合?卷积神经网络?(最后一个有点记不清了...)

简答题

1. 简述生成对抗网络(GAN)的主要组成,以及训练过程

2. 简述语言模型的发展历程

计算题

1. 卷积计算

请使用卷积神经网络中的Same卷积计算下图所示输入矩阵和卷积核对应的特征图,卷积步长为1,激活函数采用ReLU。

2. 多分类任务中,某个样本的期望输出为(0,0,0,1),两个模型A和B都采用交叉熵作为损失函数,针对该样本的实际输出分别为(In20,In40,In60,In80)、(In10,In30,ln50,In90),采用Softmax 函数对输出进行归一化并计算两个模型的交叉熵,说明哪个模型更好。提示:lg2≈0.301,lg3≈0.477。

设计题

1. 请你设计一个图片描述模型,要求有自己的新想法、新见解

### 回答1: 科大深度学习课程中,徐俊刚老师的期末考试是一个重要的评估方式。这门课程主要涉及深度学习的基本概念、算法和应用。期末考试的目的是测试学生对于这门课程内容的理解和掌握程度。 徐俊刚老师的期末考试通常包括两个部分:选择和编程。选择部分涵盖课堂内容的各个方面,涉及到深度学习的基本知识、算法和应用。学生需要根据目的要求选择正确的答案。编程部分要求学生使用编程语言实现深度学习的相关算法,并运用这些方法解决给定的问。 在考试之前,徐俊刚老师通常会给出一份复习指南,包括课堂讲授的重点知识点和参考资料。学生可以依据这份指南进行复习,强化对于各个知识点的理解。 期末考试对于学生来说是一个重要的机会,既可以巩固对于深度学习知识的掌握,也可以检验自己的学习成果。在备考期间,学生可以通过复习课堂笔记、参考相关教材和做一些习来提高自己的理论和实践能力。 总之,科大深度学习课程中徐俊刚老师的期末考试是一个考察学生对深度学习知识和算法掌握情况的重要环节。通过复习和备考,学生可以全面提升自己的深度学习能力,并在考试中取得好成绩。 ### 回答2: 科大深度学习课程中,徐俊刚老师的期末考试内容主要包括以下方面。 首先,考试将涉及深度学习的基本概念和理论知识。学生需要掌握深度学习的基本理,包括神经网络的结构、参数优化方法、激活函数的选择等。此外,还需要了解深度学习在计算机视觉、自然语言处理等领域中的应用。 其次,考试会涉及深度学习的模型和算法。学生需要熟悉常见的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)等,并了解它们的理和工作机制。此外,还需要掌握深度学习中的一些常用算法,如反向传播算法、梯度下降算法等。 第三,考试还会涉及深度学习的实际应用和技术工具。学生需要了解深度学习在实际中的应用案例,如图像分类、机器翻译等。此外,还需要熟悉深度学习的相关技术工具,如TensorFlow、PyTorch等,以及它们的使用方法和调试技巧。 最后,考试可能还会包括一些编程目。学生可能需要根据给定的问,设计和实现相应的深度学习模型,并对其进行训练和评估。 总的来说,科大深度学习徐俊刚老师的期末考试将综合考察学生对深度学习的理论知识、模型算法、实际应用和编程实现能力。学生需充分准备,理解课程内容,提前复习,进行代码练习和实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mungeryang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值