5、SHAP 值的高级用法

这篇博客探讨了SHAP值在机器学习模型解释中的高级应用,包括SHAP值的回顾、汇总图和依赖贡献图的解释。通过示例展示了如何使用SHAP值来分析特征对预测的影响,揭示了模型的内部工作机制。汇总图提供了特征重要性的全局视图,而依赖贡献图则揭示了特征间的相互作用和影响分布。
摘要由CSDN通过智能技术生成

聚合 SHAP 值以获得更详细的模型解释

1、总结

我们首先学习了排列重要性和部分依赖图,以了解模型学到了什么。

然后我们学习了SHAP值,以分解个别预测的组件。

现在我们将扩展SHAP值的应用,看看如何聚合许多SHAP值可以提供比排列重要性和部分依赖图更详细的替代方案。

1、SHAP值回顾

SHAP值显示给定特征相对于在该特征的某个基线值上进行预测时预测发生了多大变化。

例如,考虑一个超级简单的模型:
y = 4 ∗ x 1 + 2 ∗ x 2 y=4∗x_1+2∗x_2 y=4x1+2x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法蒋同学

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值