参见:
http://blog.csdn.net/moc062066/article/details/6949826
简单地处理 cv::Mat,直接如下进行即可:
简单地处理 cv::Mat,直接如下进行即可:
cv::Mat tmat(4, 4, CV_32FC1);
tmat.at<float>(0,0) = 1;
cout<<tmat.at<float>(0,0)<<endl;
示例,使用openCV求矩阵的特征值与特征向量:
#include "cv.h"
#include "highgui.h"
#include <iostream>
using namespace std;
int main(int argc, char** argv) {
float mat[4][4];
for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {
mat[i][j] = (float)rand() / RAND_MAX;
}
}
cv::Mat cvmat(4,4,CV_32FC1);
for(int i=0; i<cvmat.rows; i++) {
for(int j=0; j<cvmat.cols; j++) {
cvmat.at<float>(i,j) = mat[i][j];
}
}
for(int i=0; i<cvmat.rows; i++) {
for(int j=0; j<cvmat.cols; j++) {
float tmpNum = cvmat.at<float>(i,j);
cout<<tmpNum<<" ";
} cout<<endl;
}
cv::Mat eigenvalues;
cv::Mat eigenvectors;
cv::eigen(cvmat, eigenvalues, eigenvectors);
cout<<endl;
for(int i=0; i<eigenvalues.rows; i++) {
for(int j=0; j<eigenvalues.cols; j++) {
cout<<eigenvalues.at<float>(i,j)<<endl;
}
}
cout<<endl;
for(int i=0; i<eigenvectors.rows; i++) {
for(int j=0; j<eigenvectors.cols; j++) {
cout<<eigenvectors.at<float>(i,j)<<" ";
} cout<<endl;
}
return 0;
}
示例,使用openCV求矩阵的特征值与特征向量:
#include "cv.h"
#include "highgui.h"
#include <iostream>
using namespace std;
int main(int argc, char** argv) {
}