MIT 线性代数 1-3讲 笔记:方程组的几何解释,矩阵消元,矩阵乘法,逆矩阵

MIT 线性代数 1-3讲 笔记:方程组的几何解释,矩阵消元,矩阵乘法,逆矩阵

 

第一讲 方程组的集合解释

从行图像,列图像解线性方程组。

二维:

eg:\left\{\begin{matrix} 2 x - y = 0 \\ -x+2y=3 & & & & \end{matrix}\right.      

行图像:\begin{bmatrix} 2 &-1 \\ -1 &2 \end{bmatrix}\begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 0\\ 3 \end{bmatrix}

列图像:x\begin{bmatrix} 2\\ -1 \end{bmatrix}+y\begin{bmatrix} -1\\ 2 \end{bmatrix}= \begin{bmatrix} 0\\ 3 \end{bmatrix}

所谓行图像,就是在系数矩阵上,一次取一行构成方程,在坐标系上作图。最终解就是两条直线的交点。

列图像可看做求解两个二维向量(2,-1),(-1 , 2)的某种线性组合,使得结果为(0,3)。

任意取x,y可以得到得到任意方向的二维向量,覆盖整个二维平面。

三维:

eg:\left\{\begin{matrix} 2x-y = 0 & & & & & & & & & \\ -x+2y-z =-1& & & & & & & & & \\ -3y +4z =4& & & & & & & & & \end{matrix}\right.

行图像:\begin{bmatrix} 2 &-1 &0 \\ -1 &-2 & -1\\ 0& -3 &4 \end{bmatrix}\begin{bmatrix} x\\ y\\ z \end{bmatrix}=\begin{bmatrix} 0\\ -1\\ 4 \end{bmatrix}

列图像:x\begin{bmatrix} 2\\ -1\\ 0 \end{bmatrix}+y\begin{bmatrix} -1\\ 2\\ 3 \end{bmatrix}+z\begin{bmatrix} 0\\ -1\\ 4 \end{bmatrix}=\begin{bmatrix} 0\\ -1\\ 4 \end{bmatrix}

三维的行图像即求三个平面的交点,实际上到了三维就已经很难看出,若到了更高维,行图像显然是不合理的。

而列图像仍是对向量的线性组合,这里变成三个三维向量(2,-1,0),(-1, 2 ,3), (0,-1, 4)的线性组合。列图像的思路显然更加清晰,即寻找线性组合。这里很容易看出x=0,y=0,z=1.

这里讨论了一个问题:对于AX=b,任意b都有解吗?也就是说3*3矩阵A中的列向量是否可以覆盖整个三维空间。

列向量线性不相关则是可以覆盖的,也就是对任意b都能求出解。

第二讲 矩阵消元

这篇文章写得很清楚了,这一节讲了通过消元方法求解复杂方程组(最终消元成上三角形式)

https://mp.weixin.qq.com/s?__biz=MzA5ODUxOTA5Mg==&mid=2652554716&idx=2&sn=1e575fdf8a0f2fd03026a0e9c087d9c1&chksm=8b7e3487bc09bd91d320e55a4cb9965da30ef61734dc7ae102484481c83dec08239cde4cf3c3&scene=21#wechat_redirect

第三讲 矩阵乘法和逆矩阵

这一讲介绍了四种矩阵乘法:行乘列即常规方法,行方法,列方法,列乘行。

详细的阐述:

https://mp.weixin.qq.com/s?__biz=MzA5ODUxOTA5Mg==&mid=2652555019&idx=3&sn=db8bffcca94617c5e7af8ee62283f753&chksm=8b7e3650bc09bf46bd08e0c481f9275ee0cfa1c9a47007bda99badb62a0808d9df6d17e95ee4&scene=21#wechat_redirect

A * B = C

常规方法:就是大学里学的那种^{C34} =\sum_{k=1}^{n}^{a3k}^{bk4}

行方法:看做B中行的线性组合

列方法:看做A中列的线性组合(大学里学过的:左乘行变换,右乘列变换)

列乘行方法

分块乘法:

逆矩阵&非奇异矩阵:

A^{-1}A=IAA^{-1}=I

判断是否可逆:

不可逆的解释:A的n维向量不能覆盖整个n维空间;所有线性组合均线在一条直线上。

求可逆矩阵的逆矩阵:

Gause-Jordan (solve 2 aquations at once)

这种方法跟我们大学里学的差不多,不过看完这节课对它有了更深层次点的认识,以前只知道怎么算知其然不知其所以然,

E\begin{bmatrix} A &I \end{bmatrix} = \begin{bmatrix} I & A^{-1} \end{bmatrix}

这里面的E可以看做是多个矩阵消元操作的结合,A经过E变换为单位矩阵,EA = I,可知E就是A^{-1},所以EI =A^{-1},就求得了矩阵A的逆。

参考链接:

https://mp.weixin.qq.com/s?__biz=MzA5ODUxOTA5Mg==&mid=2652555019&idx=3&sn=db8bffcca94617c5e7af8ee62283f753&chksm=8b7e3650bc09bf46bd08e0c481f9275ee0cfa1c9a47007bda99badb62a0808d9df6d17e95ee4&scene=21#wechat_redirect

ps:这个公众号有几篇对线性代数的精细讲解,可惜后面没更新了,本片笔记有些图片来自这篇文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值