MIT线性代数笔记-第5讲-转置,置换,向量空间

5.转置,置换,向量空间

置换

置换矩阵:用于完成行互换的矩阵,即行重新排列了的单位矩阵,记作 P P P,单位矩阵也属于一种置换矩阵

  1. 所有置换矩阵均可逆

  2. n n n阶置换矩阵共有 n ! n! n!

  3. 置换矩阵的逆矩阵与其转置一致

    证明: P T P^T PT的列与 P P P的行对应相等,而 P T P P^{T} P PTP等于对应行列相乘的叠加,挨个考虑每对行列相乘的结果不难得到单 位矩阵,因而 P T = P − 1 P^T = P^{-1} PT=P1


转置

主对角线:方阵中从左上至右下的对角线

转置的公式表示为 a i , j T = a j , i a^T_{i,j} = a_{j,i} ai,jT=aj,i

  1. 矩阵转置前后可逆性不变,因为可逆性考虑的是矩阵各行/列是否线性相关,而该点在转置前后一致

  2. A T B = B T A A^T B = B^T A ATB=BTA

  3. ( A B ) T = B T A T (AB)^T = B^T A^T (AB)T=BTAT

    证明: A B = C AB = C AB=C

    ​     c i , j T = c j , i = r o w   j   o f   A → ⋅ c o l u m n   i   o f   B → = c o l u m n   j   o f   A T → ⋅ r o w   i   o f   B T → c^T_{i,j} = c_{j,i} = \overrightarrow{row\ j\ of\ A} \cdot \overrightarrow{column\ i\ of\ B} = \overrightarrow{column\ j\ of\ A^T} \cdot \overrightarrow{row\ i\ of\ B^T} ci,jT=cj,i=row j of A column i of B =column j of AT row i of BT

    ​    因而 C T = B T A T C^T = B^T A^T CT=BTAT

  4. 任意矩阵右乘其转置都可得到对称矩阵

    证明: ( A T A ) T = A T ( A T ) T = A T A (A^T A)^T = A^T (A^T)^T = A^T A (ATA)T=AT(AT)T=ATA

  5. 任意方阵右乘其转置所得矩阵当且仅当该方阵可逆时可逆

    证明: ①若方阵 A T A^T AT可逆,那么当且仅当 A x ⃗ = O A \vec{x} = O Ax =O时, A T A x ⃗ = O A^T A \vec{x} = O ATAx =O,而 A A A也可逆,因而不存在非零向量 x ⃗ \vec{x} x 使 A x ⃗ = O A \vec{x} = O Ax =O,即不存在非零向量 x ⃗ \vec{x} x 使 A T A x ⃗ = O A^T A \vec{x} = O ATAx =O,所以 A T A A^T A ATA可逆

    ​    ②若非零方阵 A A A A T A^T AT不可逆,那么存在非零向量 x ⃗ \vec{x} x 使 A x ⃗ = O A \vec{x} = O Ax =O,即存在非零向量 x ⃗ \vec{x} x 使 A T A x ⃗ = O A^T A \vec{x} = O ATAx =O,所以 A T A A^T A ATA不 可逆;若 A = O A = O A=O,那么 A T A = O A^T A = O ATA=O,不可逆

    ​     ∴ \therefore 综上,证毕

  6. 任意矩阵右乘其转置所得矩阵的零空间均为该矩阵的零空间

    证明: A T A A^T A ATA的零空间即使得 A T A x ⃗ = 0 ⃗ A^T A \vec{x} = \vec{0} ATAx =0 x ⃗ \vec{x} x 的集合,此时 A x ⃗ A \vec{x} Ax 应属于 A T A^T AT的零空间,即 A A A的左零空间

    ​    又 A x ⃗ A \vec{x} Ax 属于 A A A的列空间,列空间和左零空间正交,二者的交集只有 0 ⃗ \vec{0} 0

    ​    所以 A x ⃗ = 0 ⃗ A \vec{x} = \vec{0} Ax =0 ,因而 A T A A^T A ATA A A A零空间一致

  7. 任意矩阵右乘其转置所得矩阵的秩均等于该矩阵的秩

    证明: A T A A^T A ATA A A A零空间一致,因而二者自由列数量一致,又二者列数一致,因而二者主列数量一致,即秩相等

  8. 列满秩矩阵右乘其转置所得矩阵可逆

    证明: 法一:设 A A A为一个列满秩矩阵,可知 A T A A^T A ATA为方阵,又 A T A A^T A ATA的秩与 A A A一致,即 A T A A^T A ATA的秩与其阶数一致,所以 A T A A^T A ATA为可逆矩阵

    ​    法二:设 A A A为一个列满秩矩阵,若 A T A x ⃗ = O A^T A \vec{x} = O ATAx =O,则 x ⃗ T A T A x ⃗ = O \vec{x}^T A^T A \vec{x} = O x TATAx =O,即 ( A x ⃗ ) T A x ⃗ = O (A \vec{x})^T A \vec{x} = O (Ax )TAx =O,所以 A x ⃗ = O A \vec{x} = O Ax =O,又 A A A 列满秩,所以 x ⃗ = 0 ⃗ \vec{x} = \vec{0} x =0 ,因而 A T A x ⃗ = O A^T A \vec{x} = O ATAx =O当且仅当 x ⃗ = 0 ⃗ \vec{x} = \vec{0} x =0 时成立,即 A T A A^T A ATA可逆


向量空间

向量空间:一些可加减、数乘的向量组成的集合(其中所有向量都从原点发出),如: R 2 R^2 R2表示二维实数向量空间, R 3 R^3 R3表示三维实数向量空间, R n R^n Rn表示 n n n维实数向量空间

  1. 向量空间必须包含 0 0 0向量,无论几维的 0 0 0向量都算向量空间,记作 Z Z Z

  2. 向量空间中的向量相加及数乘后仍处于该向量空间,即对加法和数乘封闭,如:平面直角坐标系第一象限不属于向量空间

  3. 子空间:某些属于其他向量空间的向量空间叫作前者的子空间

    如: R 2 R^2 R2的所有子空间—— R 2 R^2 R2 R 2 R^2 R2中所有过原点的直线、 R 2 R^2 R2 0 0 0向量(不过原点的直线不属于,因为其所含有的向量 起点在原点,终点在其上,对加法及数乘不封闭)

  4. 每个向量空间都是自己的子空间

  5. R 2 R^2 R2中的直线并不等同于 R 1 R^1 R1,因为 R 2 R^2 R2中的直线的向量有两个分量而 R 1 R^1 R1中只有一个

  6. 高维向量空间的子空间包括其下维度的过原点的向量空间

  7. 向量空间的和指的是相加的两个向量空间中所有元素的所有线性组合的集合

  8. 子向量的交集仍是子向量,并集不是


打赏

制作不易,若有帮助,欢迎打赏!
赞赏码

支付宝付款码

  • 18
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寒蜩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值