【Transformer】14、Are Transformers More Robust Than CNNs?

本文探讨了Transformer和CNN在计算机视觉任务中的鲁棒性。作者指出,现有对比实验并未在相同条件下进行,因此对Transformer是否比CNN更鲁棒的结论存在争议。通过公平的参数和设置对比,发现在对抗鲁棒性上,CNN优于Transformer,但在处理训练数据分布外的样本时,Transformer表现出更好的泛化能力。
摘要由CSDN通过智能技术生成

在这里插入图片描述
出处:NIPS 2021

一、背景

CNN 被广泛用于计算机视觉任务中,其成功的主要原因在于 “卷积” 这一操作,“卷积” 能够引入一定的归纳偏置,如平移不变性等。

最近,未使用卷积的 vision transformer 结构在计算机视觉领域也取得了很大的成功,ViT 主要使用自注意力机制,来实现特征提取。

二、动机

有一些学者提出,Transformer 比 CNN 更加鲁棒,但作者认为他们的结论仅仅来源于现有的实验,两者并没有被放到相同的体量下来对比。比如使用 ResNet 50(约25M 参数)和 ViT-B(约86M参数)进行对比,而且训练数据集、epoch数、数据增强方法都有不同。所以作者认为谁更鲁棒的问题仍然是一个开放的问题。

所以,作者在本文中对 Transformer 和 CNN 进行了一次公平的对比

DeiT-S (22M, 76.8% top1 acc) VS. ResNet 50 (25M, 76.9% top1 acc)

三、方法

作者主要从两方面进行性能对比:

  • 对抗鲁棒性

    它们是通过向图像添加人类察觉不到的扰动或小、大小的 patch 来制作的,这会导致深度学习网络产生错误的预测,

  • 分布外样本的鲁棒性

    对网络使用和训练数据不同分布的测试数据进行测试

四、结论

Transformer 在 对抗鲁棒性上没有 CNN 表现好

在这里插入图片描述

Transformer 模型能够更好的对训练数据分布外的数据进行预测

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呆呆的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值