R
jl老弟
这个作者很懒,什么都没留下…
展开
-
R计算相关性-单表
用R包Hmisc里的rcorr函数计算相关性,并将输出矩阵格式进行转换。这里我用的是单表,行为样本名,列为细菌相对丰度,想计算细菌之间的相关性。rcorr函数计算相关性的方法有两种:Pearson和Spearman,使用示例如下:Usagercorr(x, y, type=c(“pearson”,“spearman”))install.packages('Hmisc')library(Hmisc)data<-read.table("clipboard",header = T,row.nam原创 2022-01-06 15:41:57 · 1841 阅读 · 0 评论 -
R包tsne降维在微生物中的应用
data为991位结直肠癌病人组织的微生物相对丰度表,行为样本,列为细菌,最后一列为分组,分为癌症的四个阶段install.packages("tsne")library(tsne)data<-read.table("clipboard",header = T,row.names = 1)colors = rainbow(length(unique(data$stage)))names(colors) = unique(data$stage)head(colors)tsne_data&l原创 2021-12-30 17:14:28 · 402 阅读 · 0 评论 -
普氏分析在生信中的应用
普氏分析(Procrustes Analysis)在微生物群落研究的过程中,我们经常需要评估微生物群落结构与环境因子整体之间是否具有显著的相关性,此时,通常使用的方式是Mantel test和普氏分析。普鲁克分析(Procrustes Analysis) 又名普氏分析,是一种用来分析形状分布的统计方法。应用在数据分析中,可以理解为比较两组数据一致性的方法,主要用于表示样品不同方面的数据关联度。在宏基因组测序中, Procrustes分析常用于解释细菌组成与耐药基因的相关性,细菌与功能基因的相关性;在转录原创 2021-11-17 20:47:54 · 3218 阅读 · 0 评论 -
Rstudio绘制PCA图
主成分分析(PCA)使我们能够总结和可视化包含多个相互关联的定量变量所描述的个体/观测值的数据集中的信息。每个变量都可以视为一个不同的维度。 如果数据集中有3个以上的变量,则很难可视化多维超空间。主成分分析用于从多元数据表中提取重要信息,并将此信息表示为一组称为主成分的少量新变量。这些新变量对应于原始变量的线性组合。主成分的数量小于或等于原始变量的数量。给定数据集中的信息对应于其中包含的总变化。PCA的目标是识别数据变化最大的方向(或主要成分)。换句话说,PCA将多元数据的维数减少为两个或三个主要成分,这原创 2020-09-29 11:49:42 · 7290 阅读 · 2 评论