普氏分析在生信中的应用

普氏分析,又称Procrustes Analysis,常用于评估微生物群落结构与环境因子的相关性。在宏基因组和转录组研究中,它能揭示细菌组成、耐药基因、基因与表型等之间的关联。本文通过实例展示了如何利用普氏分析分析地表水和地下水微生物群落的相似性和一致性,并解释了M²和P值的含义。
摘要由CSDN通过智能技术生成

普氏分析(Procrustes Analysis)

在微生物群落研究的过程中,我们经常需要评估微生物群落结构与环境因子整体之间是否具有显著的相关性,此时,通常使用的方式是Mantel test普氏分析

普鲁克分析(Procrustes Analysis) 又名普氏分析,是一种用来分析形状分布的统计方法。应用在数据分析中,可以理解为比较两组数据一致性的方法,主要用于表示样品不同方面的数据关联度。在宏基因组测序中, Procrustes分析常用于解释细菌组成与耐药基因的相关性,细菌与功能基因的相关性;在转录组测序中, Procrustes分析可用于解释基因与表型的相关性等;在物种分类中,普氏分析可以解释不同基因对物种鉴定的一致性。

在这里,我用Procrustes Analysis分析了地表水和地下水微生物群落的相似性和一致性。

library(vegan)
groundwater<-read.table("clipboard",header = T)
surface<-read.table("clipboard",header=T)
groundwater.dist<-vegdist(groundwater,method = "bray")
surface.dist<-vegdist(surface,method = "bray")

mds.ground<-monoMDS(groundwater.dist)
mds.surface<-monoMDS(surface.dist)

pro.g.s<-procrustes(mds.ground,mds.surface)
pro.g.s
protest(mds.ground,mds.surface)

Y <- cbind(data.frame(pro.g.s$Yrot), data.frame(pro.g.s$X))
X <- data.frame(pro.g.s$rotation)

Y$ID <- rownames(Y)

p <- ggplot(Y) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>