08.第四章 Markov链(3)

第四章 Markov链(3)

1.平稳Markov链

Markov链的极限分布:对于状态空间为 E = { 1 , 2 , ⋯   , N } \mathcal E=\{1,2,\cdots,N\} E={1,2,,N}的Markov链 X \boldsymbol X X,其转移概率矩阵为 P \boldsymbol P P,初始分布为 p 0 \boldsymbol p_0 p0。如果存在 E \mathcal E E上的一个概率分布 μ = ( μ 1 , ⋯   , μ N ) \boldsymbol \mu=(\mu_1,\cdots,\mu_N) μ=(μ1,,μN),使得 ∀ j ∈ E \forall j\in \mathcal E jE,有
lim ⁡ n → ∞ p n ( j ) = μ j \lim_{n\to \infty }p_n(j)=\mu_j nlimpn(j)=μj
则称 μ \boldsymbol \mu μ为Markov链 X \boldsymbol X X的极限分布。极限分布能表明Markov链的趋向于长时间的性质。

对于初始分布 μ \boldsymbol \mu μ和概率转移矩阵 P \boldsymbol P P,如果 lim ⁡ n → ∞ P ( n ) = lim ⁡ n → ∞ P n \lim\limits_{n\to \infty}\boldsymbol P^{(n)}=\lim\limits_{n\to \infty }\boldsymbol P^n nlimP(n)=nlimPn存在,则极限分布为 lim ⁡ n → ∞ μ P n \lim\limits_{n\to \infty }\boldsymbol \mu\boldsymbol P^n nlimμPn。因此,要计算Markov链的极限分布,主要是计算转移概率矩阵收敛到哪一个矩阵;如果不收敛,则此Markov链没有极限分布。

Markov链的平稳分布:为使 X \boldsymbol X X是强平稳过程,有 p 0 = p 1 = ⋯ \boldsymbol p_0=\boldsymbol p_1=\cdots p0=p1=,这等价于 p 0 = p 0 P \boldsymbol p_0=\boldsymbol p_0\boldsymbol P p0=p0P,一般的初始分布和转移概率矩阵并不一定满足这个式子。但如果存在概率分布 π = ( π 1 , π 2 , ⋯   , π N ) \boldsymbol \pi=(\pi_1,\pi_2,\cdots,\pi_N) π=(π1,π2,,πN)使得 π P = π \boldsymbol \pi\boldsymbol P=\boldsymbol \pi πP=π,则称 π \boldsymbol \pi π为Markov链 X \boldsymbol X X的平稳分布。为确定平稳分布,需要求解这样的线性方程组:
{ ∑ i = 1 N π i p N i = π i ; ∑ i = 1 N π i = 1 ; π i ≥ 0 , ∀ i . \left\{ \begin{array}l \displaystyle\sum\limits_{i=1}^N \pi_i p_{Ni}=\pi_i;\\ \displaystyle\sum\limits_{i=1}^N \pi_i=1;\\ \pi_i\ge0, \forall i. \end{array} \right. i=1NπipNi=πi;i=1Nπi=1;πi0,i.
如果Markov链存在平稳分布 π \boldsymbol \pi π,则取之作为初始分布,可以得到平稳Markov链。注意,Markov链的平稳分布并不是唯一的。

平稳分布与平均返回时间之间存在联系,如果 X \boldsymbol X X是非周期不可约的,转移概率矩阵为 P \boldsymbol P P,那么该Markov链存在平稳分布当且仅当每个状态都是正常返,并且
π j = 1 τ j , j ∈ E \pi_j=\frac{1}{\tau _j},j\in \mathcal E πj=τj1,jE
由此,一旦找到了非周期不可约的Markov链的平稳分布,就可以判断其每个状态都是正常返的,且可以计算每个状态的平均常返时间。

平稳分布与极限分布之间存在联系,如果 X \boldsymbol X X是非周期不可约的,转移概率矩阵为 P \boldsymbol P P,那么该Markov链存在极限分布当且仅当存在平稳分布,且两者相等。(若是周期Markov链,则不一定成立)

不可约零常返或瞬时Markov链不存在平稳分布。

2.可逆Markov链

Markov性是无后效性,即下一时刻的状态只与当前时刻的状态有关,而与过去所经历的状态无关;如果反过来计算 P ( X n = j ∣ X n + 1 = i , X n + 2 = i n + 2 , ⋯   ) P(X_n=j|X_{n+1}=i,X_{n+2}=i_{n+2},\cdots) P(Xn=jXn+1=i,Xn+2=in+2,),则有
P ( X n = j ∣ X n + 1 = i , X n + 2 = i n + 2 , ⋯   ) = P ( X n = j , X n + 1 = i , X n + 2 = i n + 2 , ⋯   ) P ( X n + 1 = i , X n + 2 = i n + 2 , ⋯   ) = p n ( j ) p j i p i i n + 2 ⋯ p n + 1 ( i ) p i i n + 2 ⋯ = P ( X n = j ∣ X n + 1 = i ) \begin{aligned} &P(X_n=j|X_{n+1}=i,X_{n+2}=i_{n+2},\cdots)\\ =&\frac{P(X_n=j,X_{n+1}=i, X_{n+2}=i_{n+2},\cdots)}{P(X_{n+1}=i, X_{n+2}=i_{n+2},\cdots)}\\ =&\frac{p_n(j)p_{ji}p_{ii_{n+2}}\cdots}{p_{n+1}(i)p_{ii_{n+2}}\cdots}\\ =&P(X_n=j|X_{n+1}=i) \end{aligned} ===P(Xn=jXn+1=i,Xn+2=in+2,)P(Xn+1=i,Xn+2=in+2,)P(Xn=j,Xn+1=i,Xn+2=in+2,)pn+1(i)piin+2pn(j)pjipiin+2P(Xn=jXn+1=i)
也就是说 X ∗ = ( ⋯   , X n + 1 , X n , ⋯   , X 1 , X 0 ) \boldsymbol X^*=(\cdots,X_{n+1},X_n,\cdots,X_1,X_0) X=(,Xn+1,Xn,,X1,X0)也是一个状态空间为 E \mathcal E E的Markov链。如果初始分布为 π \boldsymbol \pi π,则有 p n ( j ) p n + 1 ( i ) p j i = π j π i p j i \displaystyle{\frac{p_n(j)}{p_{n+1}(i)}p_{ji}=\frac{\pi_j}{\pi_i}p_{ji}} pn+1(i)pn(j)pji=πiπjpji

可逆Markov链:如果 ∀ m ≥ 0 , M ≥ m \forall m\ge0,M\ge m m0,Mm,有 ( X M , X M − 1 , ⋯   , X M − m ) = d ( X 0 , X 1 , ⋯   , X m ) (X_M,X_{M-1},\cdots,X_{M-m})\stackrel d=(X_0,X_1,\cdots,X_m) (XM,XM1,,XMm)=d(X0,X1,,Xm),则称 X \boldsymbol X X为可逆Markov链。

  • 显然,可逆Markov链一定是平稳的,即至少应选择 X \boldsymbol X X的平稳分布 π \boldsymbol \pi π作为初始分布。这样, X \boldsymbol X X是可逆的当且仅当 ( X 1 , X 0 ) = ( X 0 , X 1 ) (X_1,X_0)=(X_0,X_1) (X1,X0)=(X0,X1),即
    p i j = π j π i p j i ⇒ π i p i j = π j p j i p_{ij}=\frac{\pi_j}{\pi_i}p_{ji}\Rightarrow \pi_i p_{ij}=\pi_j p_{ji} pij=πiπjpjiπipij=πjpji
    这个条件是对于任意两个状态 i , j i,j i,j成立的,对于含有 N N N个状态的状态空间,则应当满足 C N 2 C_N^2 CN2个这样的等式。

  • Kolmogorov准则:对于转移概率矩阵为 P \boldsymbol P P的不可约平稳Markov链 X \boldsymbol X X,它可逆等且仅当对任意闭合路径 i 0 , i 1 , ⋯   , i m = i 0 i_0,i_1,\cdots,i_m=i_0 i0,i1,,im=i0,都有
    p i 0 i 1 p i 1 i 2 ⋯ p i m − 1 i 0 = p i 0 i m − 1 ⋯ p i 2 i 1 p i 1 i 0 p_{i_0i_1}p_{i_1i_2}\cdots p_{i_{m-1}i_0}=p_{i_0i_{m-1}}\cdots p_{i_2i_1}p_{i_1i_0} pi0i1pi1i2pim1i0=pi0im1pi2i1pi1i0
    按照Kolmogorov准则,可以避开计算Markov链的平稳分布,直接由转移概率矩阵验证Markov链的可逆性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值