12.第八章 平稳随机过程遍历性

第八章 平稳随机过程遍历性

1.时间平均与空间平均

对于随机变量,其加权平均实际上就是数学其期望,也就是
μ = E X = ∑ k = 1 N p k x k 或 μ = E X = ∫ R x p ( x ) d x \mu=EX=\sum_{k=1}^N p_kx_k或\mu=EX=\int_\R xp(x)dx μ=EX=k=1Npkxkμ=EX=Rxp(x)dx
由Khinchin大数定律得,独立同分布的随机变量 X i X_i Xi,有 1 n ∑ i = 1 n X i → P μ \frac1n \sum_{i=1}^n X_i\stackrel P\to \mu n1i=1nXiPμ,进而由Kolmogorov大数定律加强为几乎处处收敛。由此,对于一般的随机变量,可以通过多次观察取平均值估计均值,也就是其空间平均。

但对于随机过程的数学期望 μ ( t ) \mu(t) μ(t),受限于某些实际条件无法通过反复观察,即多次测量取空间平均,也就是说只有一个观测值,大数定律无法使用。因此利用随机过程的另一维度时间,考虑时间平均,并且只考虑宽平稳过程——二阶矩存在、均值函数为常数、自相关函数只与时间间隔有关。

对于离散型平稳随机过程 X \boldsymbol X X,时间参数空间为 Z + \Z^+ Z+,取前 n n n个观测值的平均值为
X ˉ = X 0 + X 1 + ⋯ + X n − 1 n \bar X=\frac{X_0+X_1+\cdots+X_{n-1}}n Xˉ=nX0+X1++Xn1
如果存在一个随机变量 τ \tau τ,使得 ( X ˉ n , n ≥ 1 ) (\bar X_n,n\ge 1) (Xˉn,n1)在均方意义下收敛于 τ \tau τ,即 lim ⁡ n → ∞ E ( X ˉ − τ ) 2 = 0 \lim\limits_{n\to \infty}E(\bar X-\tau)^2=0 nlimE(Xˉτ)2=0,则称 τ \tau τ为该随机过程的时间平均,简记为
lim ⁡ n → ∞ X ˉ n = τ \lim_{n\to \infty }\bar X_n=\tau nlimXˉn=τ
如果离散型平稳随机过程 X \boldsymbol X X的时间参数空间为 Z \Z Z,则类似取 X ˉ = 1 2 n + 1 ∑ i = − n n X i \bar X=\frac{1}{2n+1}\sum\limits_{i=-n}^nX_i Xˉ=2n+11i=nnXi,其均方收敛的随机变量为时间平均。

对于连续性平稳随机过程以积分代替求和,若 X \boldsymbol X X的时间参数空间为 [ 0 , T ] [0,T] [0,T],则定义时间平均为
X ˉ = 1 T ∫ 0 T X ( t ) d t \bar X=\frac1T\int_0^T X(t)dt Xˉ=T10TX(t)dt
这里的积分,指的是均方可积,即对于积分 ∫ 0 T X ( t ) d t \int_0^TX(t)dt 0TX(t)dt,分割求和为 S n = ∑ k = 1 n X ( t k ∗ ) ( t k − t k − 1 ) S_n=\sum_{k=1}^nX(t_k^*)(t_k-t_{k-1}) Sn=k=1nX(tk)(tktk1),这里 t k ∗ t_k^* tk是区间 [ t k − 1 , t k ] [t_{k-1},t_k] [tk1,tk],如果存在一个随机变量 ξ T \xi_T ξT使得 lim ⁡ max ⁡ k ( t k − t k − 1 ) → 0 E ( S n − ξ T ) 2 = 0 \lim\limits_{\max\limits_k(t_k-t_{k-1})\to 0}E(S_n-\xi_T)^2=0 kmax(tktk1)0limE(SnξT)2=0,则称 X ( t ) X(t) X(t) [ 0 , T ] [0,T] [0,T]内均方可积,且 ∫ 0 T X ( t ) d t = ξ T \int_0^TX(t)dt=\xi_T 0TX(t)dt=ξT

  • 对于二阶矩过程 X ( t ) X(t) X(t) E X ( t ) < ∞ EX(t)<\infty EX(t)<,如果 ∫ 0 T ∫ 0 T E ( X ( s ) X ( t ) ) d s d t < ∞ \int_0^T\int_0^TE(X(s)X(t))dsdt<\infty 0T0TE(X(s)X(t))dsdt<,则 X ( t ) X(t) X(t) [ 0 , T ] [0,T] [0,T]内均方可积。

对于连续性随机过程 X \boldsymbol X X,时间参数空间为 [ − T , T ] [-T,T] [T,T],则定义时间平均为
X ˉ = 1 2 T ∫ − T T X ( t ) d t \bar X=\frac1{2T}\int_{-T}^T X(t)dt Xˉ=2T1TTX(t)dt
如果希望用时间平均代替空间平均,则希望有 τ = μ  a.s. \tau=\mu \text{ a.s.} τ=μ a.s.,这就是均值遍历性,即平稳随机过程 X \boldsymbol X X时间平均等于样本平均(空间平均)的性质。

2.均值遍历性

对于离散时间平稳随机过程 X = ( X n , n ≥ 0 ) , E X n = μ , r X ( k ) = E ( X 0 X k ) \boldsymbol X=(X_n,n\ge 0),EX_n=\mu,r_X(k)=E(X_0X_k) X=(Xn,n0),EXn=μ,rX(k)=E(X0Xk),那么 X \boldsymbol X X满足均值遍历性当且仅当
lim ⁡ n → ∞ 1 n 2 ∑ k = 1 n ( n − k ) ( r X ( k ) − μ 2 ) = 0 \lim\limits_{n\to \infty} \frac1{n^2}\sum_{k=1}^n (n-k)(r_X(k)-\mu^2)=0 nlimn21k=1n(nk)(rX(k)μ2)=0
这等价于 X \boldsymbol X X满足均值遍历性当且仅当
lim ⁡ n → ∞ 1 n ∑ k = 1 n ( r X ( k ) − μ 2 ) = 0 \lim_{n\to \infty }\frac 1n \sum_{k=1}^n (r_X(k)-\mu^2)=0 nlimn1k=1n(rX(k)μ2)=0
由此推得,在以上假设下,如果 r X ( k ) → μ 2 , k → ∞ r_X(k)\to \mu^2,k\to \infty rX(k)μ2,k,则 X \boldsymbol X X满足均值遍历性。注意此条件相当于随机过程渐进不相关,也就是随着时间差 k k k的增大,随机过程的自协方差趋近于0。

对于连续时间平稳随机过程 X = ( X ( t ) , t ≥ 0 ) , E X ( t ) = μ , r X ( t ) = E ( X ( 0 ) X ( t ) ) \boldsymbol X=(X(t),t\ge0),EX(t)=\mu,r_X(t)=E(X(0)X(t)) X=(X(t),t0),EX(t)=μ,rX(t)=E(X(0)X(t)),那么 X \boldsymbol X X满足均值遍历性当且仅当
lim ⁡ T → ∞ 1 T 2 ∫ 0 T ( T − t ) ( r X ( t ) − μ 2 ) d t = 0 \lim_{T\to \infty}\frac1{T^2}\int_0^T(T-t)(r_X(t)-\mu^2)dt=0 TlimT210T(Tt)(rX(t)μ2)dt=0
这等价于 X \boldsymbol X X满足均值遍历性当且仅当
lim ⁡ T → ∞ 1 T ∫ 0 T ( r X ( t ) − μ 2 ) d t = 0 \lim_{T\to \infty }\frac1T\int_0^T (r_X(t)-\mu^2)dt=0 TlimT10T(rX(t)μ2)dt=0
由此推得,在以上假设下,如果 r X ( T ) − μ 2 → 0 , T → ∞ r_X(T)-\mu^2\to 0,T\to \infty rX(T)μ20,T,则 X \boldsymbol X X满足均值遍历性。

对于双边时间参数的平稳随机过程,满足均值遍历性的条件也大概相似。

Von Neumann遍历定理:假设 X = ( X n , n ≥ 0 ) \boldsymbol X=(X_n,n\ge 0) X=(Xn,n0)是平稳随机过程,均值为 μ \mu μ,那么一定存在一个随机变量 η \eta η使得 E η = μ E\eta=\mu Eη=μ,且
1 n ∑ k = 0 n − 1 X k → L 2 η \frac1n \sum_{k=0}^{n-1}X_k\stackrel{L^2}\to \eta n1k=0n1XkL2η
Garrett Birkhoff强遍历定理:假设 X = ( X n , n ≥ 0 ) \boldsymbol X=(X_n,n\ge0) X=(Xn,n0)是强平稳随机过程,均值为 μ \mu μ,那么一定存在一个随机变量 η \eta η使得 E η = μ E\eta=\mu Eη=μ,并且
1 n ∑ k = 0 n − 1 X k → η  a.s. \frac1n\sum_{k=0}^{n-1}X_k \to \eta \text{ a.s.} n1k=0n1Xkη a.s.

  • 4
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值