02.第二章 抽样分布及若干预备知识(1)

第二章 抽样分布及若干预备知识(1)

1.正态随机变量的线性组合

正态随机变量的线性组合:设随机变量 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn相互独立,且 X k ∼ N ( a k , σ k 2 ) X_k\sim N(a_k, \sigma_k^2) XkN(ak,σk2),有常数 c 1 , ⋯   , c n c_1,\cdots,c_n c1,,cn,记 T = ∑ k = 1 n c k X k T=\sum_{k=1}^n c_kX_k T=k=1nckXk,则 T ∼ N ( μ , τ 2 ) , μ = ∑ k = 1 n c k a k , τ 2 = ∑ i = 1 n c k 2 σ k 2 T\sim N(\mu, \tau^2),\mu=\sum_{k=1}^n c_ka_k,\tau^2=\sum_{i=1}^n c_k^2\sigma_k^2 TN(μ,τ2),μ=k=1nckak,τ2=i=1nck2σk2。即——独立正态变量的线性组合依然是正态变量。

  • 正态分布的特征函数: X ∼ N ( a , σ 2 ) X\sim N(a,\sigma^2) XN(a,σ2),其特征函数为 f X ( t ) = e i a t − 1 2 σ 2 t 2 f_X(t)=e^{iat-\frac12\sigma^2t^2} fX(t)=eiat21σ2t2
  • 特征函数的计算性质:如果 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn相互独立,且特征函数分别为 f 1 ( t ) , ⋯   , f n ( t ) f_1(t), \cdots, f_n(t) f1(t),,fn(t),则 T = ∑ k = 1 n c k X k T=\sum_{k=1}^nc_kX_k T=k=1nckXk的特征函数为 f T ( t ) = f 1 ( c 1 t ) ⋯ f n ( c n t ) f_T(t)=f_1(c_1t)\cdots f_n(c_nt) fT(t)=f1(c1t)fn(cnt)

由以上结论可以很直观地得到正态总体样本均值的分布,因为正态总体里的每一个样本都独立同分布于总体,所以对于正态总体 N ( a , σ 2 ) N(a,\sigma^2) N(a,σ2),其样本均值 X ˉ = 1 n ∑ k = 1 n X k ∼ N ( a , σ 2 n ) \bar X=\frac1n\sum_{k=1}^nX_k\sim N(a, \frac{\sigma^2}n) Xˉ=n1k=1nXkN(a,nσ2)


正态随机变量的线性变换:现设 X 1 , ⋯   , X n X_1,\cdots, X_n X1,,Xn N ( a , σ 2 ) N(a,\sigma^2) N(a,σ2)中简单随机抽取的样本,记 X = ( X 1 , ⋯   , X n ) ′ , Y = ( Y 1 , ⋯   , Y n ) ′ , A = ( a i j ) n × n \boldsymbol X=(X_1,\cdots, X_n)',\boldsymbol Y=(Y_1,\cdots, Y_n)',\boldsymbol A=(a_{ij})_{n\times n} X=(X1,,Xn),Y=(Y1,,Yn),A=(aij)n×n,满足 Y = A X \boldsymbol Y=\boldsymbol {AX} Y=AX,即
( Y 1 ⋮ Y n ) = ( a 11 ⋯ a 1 n ⋮ ⋮ a n 1 ⋯ a n n ) ( X 1 ⋮ X n ) \left( \begin{array}{c} Y_1\\ \vdots \\Y_n \end{array} \right)= \left( \begin{array}{c} a_{11}&\cdots&a_{1n}\\ \vdots& &\vdots\\ a_{n1}&\cdots&a_{nn} \end{array} \right) \left( \begin{array}{c} X_1\\ \vdots \\X_n \end{array} \right) Y1Yn=a11an1a1nannX1Xn
这里显然 Y i = ∑ k = 1 n a i k X k Y_i=\sum_{k=1}^n a_{ik}X_k Yi=k=1naikXk,所以有

  • Y 1 , ⋯   , Y n Y_1,\cdots,Y_n Y1,,Yn也是正态随机变量,且 Y i ∼ N ( a ∑ k = 1 n a i k , σ 2 ∑ k = 1 n a i k 2 ) Y_i\sim N(a\sum_{k=1}^n a_{ik}, \sigma^2\sum_{k=1}^na_{ik}^2) YiN(ak=1naik,σ2k=1naik2)
  • 如果 A \boldsymbol A A是正交阵(各行各列都是单位向量且两两正交),则各个 Y i Y_i Yi的方差都是 σ 2 \sigma^2 σ2,因为其行向量是单位向量,有 ∑ k = 1 n a i k 2 = 1 \sum_{k=1}^n a_{ik}^2=1 k=1naik2=1。若进一步假定 a = 0 a=0 a=0,则各个 Y i Y_i Yi均服从 N ( 0 , σ 2 ) N(0,\sigma^2) N(0,σ2),这说明正态分布 N ( 0 , σ 2 ) N(0,\sigma^2) N(0,σ2)的随机变量经正交变换后依然独立地服从 N ( 0 , σ 2 ) N(0,\sigma^2) N(0,σ2)(独立性参加下式协方差的值)。
  • C o v ( Y i , Y j ) = C o v ( a i 1 X 1 + ⋯ + a i n X n , a j 1 X 1 + ⋯ + a j n X n ) Cov(Y_i,Y_j)=Cov(a_{i1}X_1+\cdots+a_{in}X_n,a_{j1}X_1+\cdots+a_{jn}X_n) Cov(Yi,Yj)=Cov(ai1X1++ainXn,aj1X1++ajnXn),由于 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn之间独立,所以 C o v ( Y i , Y j ) = σ 2 ∑ k = 1 n a i k a j k Cov(Y_i,Y_j)=\sigma^2\sum_{k=1}^n a_{ik}a_{jk} Cov(Yi,Yj)=σ2k=1naikajk

2.正态变量样本均值与样本方差

现讨论正态变量样本均值和方差的分布,设 X 1 , ⋯   , X n X_1,\cdots, X_n X1,,Xn简单随机服从 N ( a , σ 2 ) N(a,\sigma^2) N(a,σ2),令 X ˉ = 1 n ∑ k = 1 n X i , S 2 = 1 n − 1 ∑ k = 1 n ( X ˉ − X ) 2 \bar X=\frac1n\sum_{k=1}^n X_i,S^2=\frac1{n-1}\sum_{k=1}^n(\bar X-X)^2 Xˉ=n1k=1nXi,S2=n11k=1n(XˉX)2

首先是 X ˉ \bar X Xˉ,由前面的讨论,显然有 X ˉ ∼ N ( a , σ 2 n ) \bar X\sim N(a, \frac {\sigma^2}n) XˉN(a,nσ2)

对于 S 2 S^2 S2,有 ( n − 1 ) S 2 σ 2 ∼ χ n − 1 2 \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1} σ2(n1)S2χn12,这里 χ n − 1 2 \chi^2_{n-1} χn12是指 n − 1 n-1 n1个独立的标准正态随机变量平方和的分布。要证明它,首先需要构造一个正交矩阵 A \boldsymbol A A,且
A = ( 1 n 1 n ⋯ 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ) \boldsymbol A= \left( \begin{array}{c} \frac1{\sqrt n}&\frac1{\sqrt n}&\cdots&\frac1{\sqrt n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots& &\vdots\\ a_{n1}& a_{n2}&\cdots &a_{nn} \end{array} \right) A=n 1a21an1n 1a22an2n 1a2nann
即第一行全都是 1 n \frac1{\sqrt n} n 1的正交阵,可以如此构造:
A = ( 1 n 1 n 1 n ⋯ 1 n 1 2 ⋅ 1 − 1 2 ⋅ 1 0 ⋯ 0 1 3 ⋅ 2 1 3 ⋅ 2 − 2 3 ⋅ 2 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 1 n ( n − 1 ) 1 n ( n − 1 ) 1 n ( n − 1 ) ⋯ − ( n − 1 ) n ( n − 1 ) ) \boldsymbol A= \left( \begin{array}{c} \frac1{\sqrt n}&\frac1{\sqrt n}&\frac1{\sqrt n}&\cdots&\frac1{\sqrt n}\\ \frac{1}{\sqrt{2 \cdot 1}}&\frac{-1}{\sqrt{2\cdot 1}}&0&\cdots&0\\ \frac{1}{\sqrt{3\cdot2}}&\frac{1}{\sqrt{3\cdot2}}&\frac{-2}{\sqrt {3\cdot2}}&\cdots&0 \\ \vdots&\vdots& \vdots& &\vdots\\ \frac1{\sqrt{n(n-1)}}& \frac{1}{\sqrt{n(n-1)}}&\frac{1}{\sqrt{n(n-1)}}&\cdots &\frac{-(n-1)}{\sqrt{n(n-1)}} \end{array} \right) A=n 121 132 1n(n1) 1n 121 132 1n(n1) 1n 1032 2n(n1) 1n 100n(n1) (n1)
然后对样本进行正交变换 Y = A X \boldsymbol{Y=A X} Y=AX,得到 Y 1 = 1 n ∑ k = 1 n X k = n X ˉ Y_1=\frac1{\sqrt n}\sum_{k=1}^n X_k=\sqrt n \bar X Y1=n 1k=1nXk=n Xˉ。将方差 S 2 S^2 S2进行变形,有
( n − 1 ) S 2 = ∑ k = 1 n ( X k − X ˉ ) 2 = ∑ k = 1 n X k 2 + n X ˉ 2 − 2 X ˉ ∑ k = 1 n X k ∑ k = 1 n X k 2 − n X ˉ 2 \begin{array}{l} (n-1)S^2=&\sum_{k=1}^n(X_k-\bar X)^2=\sum_{k=1}^nX_k^2+n\bar X^2-2\bar X\sum_{k=1}^nX_k\\ &\sum_{k=1}^nX_k^2-n\bar X^2 \end{array} (n1)S2=k=1n(XkXˉ)2=k=1nXk2+nXˉ22Xˉk=1nXkk=1nXk2nXˉ2
由于之前证明了 Y 1 = n X ˉ Y_1=\sqrt n\bar X Y1=n Xˉ,所以 Y 1 2 = n X ˉ 2 Y_1^2=n\bar X^2 Y12=nXˉ2,又因为正交变换不改变向量的长度,所以 ∑ k = 1 n X k 2 = ∑ k = 1 n Y k 2 \sum_{k=1}^n X_k^2=\sum_{k=1}^n Y_k^2 k=1nXk2=k=1nYk2,一代换便得到
( n − 1 ) S 2 = ∑ k = 2 n Y i 2 (n-1)S^2=\sum_{k=2}^nY_i^2 (n1)S2=k=2nYi2
由于刚刚证明了正交变换后,各个 Y i Y_i Yi的方差依然是 σ 2 \sigma^2 σ2,如果接下来能够证得 Y i Y_i Yi的均值是0,协方差是0,就可以得到我们需要的结论。

实际上, Y i Y_i Yi的均值是 μ i = a ∑ k = 1 n a i k = a n ∑ k = 1 n 1 n a i k \mu_i=a\sum_{k=1}^na_{ik}=a\sqrt n\sum_{k=1}^n \frac1 {\sqrt n}a_{ik} μi=ak=1naik=an k=1nn 1aik,求和部分内是矩阵 A \boldsymbol A A第一个行向量与第 i i i个行向量的内积,由正交性,就得到了 μ i = 0 \mu_i=0 μi=0。而任意两个 Y i , Y j Y_i,Y_j Yi,Yj间的协方差是 C o v ( Y i , Y j ) = σ 2 ∑ k = 1 n a i k a j k Cov(Y_i,Y_j)=\sigma^2\sum_{k=1}^n a_{ik}a_{jk} Cov(Yi,Yj)=σ2k=1naikajk,恰好是第 i i i个行向量与第 j j j个行向量的内积,因此协方差也为0。

这样,就说明 Y 2 , ⋯   , Y n Y_2,\cdots,Y_n Y2,,Yn独立地服从 N ( 0 , σ 2 ) N(0,\sigma^2) N(0,σ2),也因此每一个 Y i σ \frac{Y_i}{\sigma} σYi都独立服从 N ( 0 , 1 ) N(0,1) N(0,1),所以
( n − 1 ) S 2 = ∑ k = 2 n Y i 2 = σ 2 ∑ k = 2 n ( Y i σ ) 2 , ( n − 1 ) S 2 σ 2 ∼ χ n − 1 2 (n-1)S^2=\sum_{k=2}^nY_i^2=\sigma^2\sum_{k=2}^n(\frac{Y_i}{\sigma})^2,\frac{(n-1)S^2}{\sigma^2}\sim \chi^2_{n-1} (n1)S2=k=2nYi2=σ2k=2n(σYi)2,σ2(n1)S2χn12
最后,由于 X ˉ \bar X Xˉ只与 Y 1 Y_1 Y1有关, S 2 S^2 S2只与 Y 2 , ⋯   , Y n Y_2,\cdots,Y_n Y2,,Yn有关,也就顺便证得了 X ˉ \bar X Xˉ S 2 S^2 S2独立。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值