母函数
母函数主要为处理取非负整数值的随机变量
- 定义
X的概率母函数,即母函数
绝对收敛
- 性质
母函数和概率分布相互唯一确定
证明概率分布由母函数在0处的k阶导数唯一确定,求导易证
g'(1)=EX;DX=g''(1)+g'(1)-g'(1)**2
X相互独立,且分别有母函数gi(s),则随机变量部分和Y有母函数
- 应用
二项,泊松,超几何,几何的母函数
运用母函数性质求其期望方差的简便性
应用问题
泊松逼近定理的新证明
掷色子问题的统一
随机随机变量之和的母函数是两个母函数的复合
复合二项分布,泊松分布(其再生性)
关于泊松分布类型问题的新解法
特征函数
- 定义
离散型:对于整值随机变量其母函数P(s),则f(t)=P(e**(it))
连续型:特征函数是密度函数的傅里叶变换
特别的:标准正态分布的特征函数为(248)
- 性质
f(0)=1;|f(t)|<=f(0);
一致收敛性
非负定性(本质性质之一)
波赫纳-辛钦定理
n个相互独立的随机变量之和的特征函数等于它们的特征函数之积
简化独立和的问题,避开卷积运算
若随机变量的n阶矩存在,特征函数可做泰勒展开
由表达式可以看出特征函数为随机变量按各阶矩展开,可见特征函数由各阶矩函数唯一确定,而矩函数和随机变量的期望方差偏态各种特征有着具体的联系,故可以大胆推测等价性。
- 逆转公式和唯一性定理
随机变量X的分布函数F(x)和特征函数f(x)相互唯一确定,且在F(x)的连续点a,b有
推广:在f(t)绝对可积的条件下,特征函数和概率密度函数互为傅里叶变换
傅里叶变换的基本性质在于两者包含相同的信息并且一一对应,而在概率论中引入的特征函数其实就是利用傅里叶变换解决概率论问题的一个工具,它的优秀之处包括一一对应,包括好的微分性质,包括对卷积运算的化简。
- 应用
分布函数的的再生性
通过在0处求导,求解期望,方差,各阶矩
连续性定理(依分布收敛和特征函数的收敛之间的关系)
证明依分布收敛到某分布的基本方法