03.第二章 抽样分布及若干预备知识(2)

第二章 抽样分布及若干预备知识(2)

1.单个次序统计量的分布

现假设 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn是来自总体 F F F的简单随机样本, f f f F F F的密度, ( X ( 1 ) , ⋯   , X ( n ) ) (X_{(1)},\cdots,X_{(n)}) (X(1),,X(n))是其次序统计量。

现在要求第 k k k个次序统计量 X ( k ) X_{(k)} X(k)的分布,先求出它的概率密度函数。由于其密度函数 f k ( x ) f_k(x) fk(x)是分布函数 F k ( x ) F_k(x) Fk(x)的导数,即 f k ( x ) = lim ⁡ Δ x → 0 F k ( x + Δ x ) − F k ( x ) Δ x f_k(x)=\lim \limits_{\Delta x\to 0}\frac{F_k(x+\Delta x)-F_k(x)}{\Delta x} fk(x)=Δx0limΔxFk(x+Δx)Fk(x),而 F k ( x + Δ x ) − F k ( x ) F_k(x+\Delta x)-F_k(x) Fk(x+Δx)Fk(x)的含义,是 X ( k ) X_{(k)} X(k)落在小区间 [ x , x + Δ x ] [x,x+\Delta x] [x,x+Δx]内的概率,我们可以以此入手求密度函数。

现在考虑“第 k k k个次序统计量 X ( k ) X_{(k)} X(k)落在无穷小区间”这一事件,找它的等价事件,为“样本 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn中,有 k − 1 k-1 k1个落在 ( − ∞ , x ) (-\infty, x) (,x)内, 1 1 1个落在 [ x , x + Δ x ] [x,x+\Delta x] [x,x+Δx]内, n − k n-k nk个落在 ( x + Δ x , ∞ ) (x+\Delta x,\infty ) (x+Δx,)内”。将样本分成这样的三组一共有 C n k − 1 C n − k + 1 1 = n ! ( n − k ) ! ( k − 1 ) ! C_{n}^{k-1}C_{n-k+1}^{1}=\frac{n!}{(n-k)!(k-1)!} Cnk1Cnk+11=(nk)!(k1)!n!种分法。

现在考虑其中的一种分法,即 X 1 , ⋯   , X k − 1 < x < X k < x + Δ x < X k + 1 , ⋯   , X n X_1,\cdots,X_{k-1}<x<X_k<x+\Delta x<X_{k+1},\cdots,X_n X1,,Xk1<x<Xk<x+Δx<Xk+1,,Xn。由于样本的总体分布函数为 F X ( x ) = ( F ( x ) ) n F_X(x)=(F(x))^n FX(x)=(F(x))n,所以这个事件的概率为
P ( X 1 , ⋯   , X k − 1 < x < X k < x + Δ x < X k + 1 , ⋯   , X n ) = [ F ( x ) ] k − 1 [ 1 − F ( x + Δ x ) ] n − k [ F ( x + Δ x ) − F ( x ) ] \begin{aligned} &\mathbf P(X_1,\cdots,X_{k-1}<x<X_k<x+\Delta x<X_{k+1},\cdots,X_n)\\ =&[F(x)]^{k-1}[1-F(x+\Delta x)]^{n-k}[F(x+\Delta x)-F(x)] \end{aligned} =P(X1,,Xk1<x<Xk<x+Δx<Xk+1,,Xn)[F(x)]k1[1F(x+Δx)]nk[F(x+Δx)F(x)]
由于一共有 n ! ( n − k ) ! ( k − 1 ) ! \frac{n!}{(n-k)!(k-1)!} (nk)!(k1)!n!种分法,所以有
F k ( x + Δ x ) − F k ( x ) = n ! ( n − k ) ! ( k − 1 ) ! [ F ( x ) ] k − 1 [ 1 − F ( x + Δ x ) ] n − k [ F ( x + Δ x ) − F ( x ) ] \begin{aligned} &F_k(x+\Delta x)-F_k(x)\\ =&\frac{n!}{(n-k)!(k-1)!}[F(x)]^{k-1}[1-F(x+\Delta x)]^{n-k}[F(x+\Delta x)-F(x)] \end{aligned} =Fk(x+Δx)Fk(x)(nk)!(k1)!n![F(x)]k1[1F(x+Δx)]nk[F(x+Δx)F(x)]
接下来就可以求密度函数:
f k ( x ) = lim ⁡ Δ x → 0 F k ( x + Δ x ) − F ( x ) Δ x = n ! ( n − k ) ! ( k − 1 ) ! lim ⁡ Δ x → 0 [ F ( x ) ] k − 1 [ 1 − F ( x + Δ x ) ] n − k F ( x + Δ x ) − F ( x ) Δ x = n ! ( n − k ) ! ( k − 1 ) ! [ F ( x ) ] k − 1 [ 1 − F ( x ) ] n − k f ( x ) \begin{aligned} &f_k(x)\\ =&\lim \limits_{\Delta x \to 0} \frac{F_k(x+\Delta x)-F(x)}{\Delta x}\\ =&\frac{n!}{(n-k)!(k-1)!}\lim \limits_{\Delta x\to 0}[F(x)]^{k-1}[1-F(x+\Delta x)]^{n-k}\frac{F(x+\Delta x)-F(x)}{\Delta x}\\ =&\frac{n!}{(n-k)!(k-1)!}[F(x)]^{k-1}[1-F(x)]^{n-k}f(x) \end{aligned} ===fk(x)Δx0limΔxFk(x+Δx)F(x)(nk)!(k1)!n!Δx0lim[F(x)]k1[1F(x+Δx)]nkΔxF(x+Δx)F(x)(nk)!(k1)!n![F(x)]k1[1F(x)]nkf(x)
这就求得了单个次序统计量的密度函数。

特别地,样本最小值 X ( 1 ) X_{(1)} X(1)的密度和分布函数是
f 1 ( x ) = n f ( x ) [ 1 − F ( x ) ] n − 1 F 1 ( x ) = 1 − [ 1 − F ( x ) ] n f_1(x)=nf(x)[1-F(x)]^{n-1}\\ F_1(x)=1-[1-F(x)]^{n} f1(x)=nf(x)[1F(x)]n1F1(x)=1[1F(x)]n
样本最大值 X ( n ) X_{(n)} X(n)的密度和分布函数是
f n ( x ) = n f ( x ) [ F ( x ) ] n − 1 F 1 ( x ) = [ F ( x ) ] n f_n(x)=nf(x)[F(x)]^{n-1}\\ F_1(x)=[F(x)]^n fn(x)=nf(x)[F(x)]n1F1(x)=[F(x)]n

2. n n n个次序统计量的联合分布

对于 n n n个次序统计量的联合分布,记其密度函数为 p ( x 1 , ⋯   , x n ) p(x_1,\cdots,x_n) p(x1,,xn),表达式为
p ( x 1 , ⋯   , x n ) = { n ! f ( x 1 ) f ( x 2 ) ⋯ f ( x n ) , x 1 < ⋯ < x n ; 0 , o t h e r w i s e . p(x_1,\cdots, x_n)=\left\{ \begin{array}{l} n!f(x_1)f(x_2)\cdots f(x_n), &x_1<\cdots<x_n;\\ 0,&otherwise. \end{array} \right. p(x1,,xn)={n!f(x1)f(x2)f(xn),0,x1<<xn;otherwise.
直观地理解是,由于次序统计量显然是从小到大递增的,因此显然不可能出现 x 1 > x 2 , X ( 1 ) ∈ [ x 1 , x i + Δ x 1 ] , X 2 ∈ [ x 2 , x 2 + Δ x 2 ] x_1>x_2,X_{(1)}\in[x_1,x_i+\Delta x_1],X_2\in [x_2, x_2+\Delta x_2] x1>x2,X(1)[x1,xi+Δx1],X2[x2,x2+Δx2]的情况,所以当次序不对时密度为0。其次,将样本次序化,其实就是给样本增加了顺序,抹除了样本本身的无序性,任何一种从小到大的排列现在都有 n ! n! n!中实际可能的排列,因此在 n n n个样本的联合密度前乘以 n ! n! n!

3.两个次序统计量的联合分布

两个次序统计量的分布比起一个的要稍微复杂一些,现在考虑 X ( i ) , X ( j ) , i < j X_{(i)},X_{(j)},i<j X(i),X(j),i<j,显然不可能出现 X ( i ) > X ( j ) X_{(i)}>X_{(j)} X(i)>X(j)的情况,因此在它们的联合密度 f i , j f_{i,j} fi,j i > j i>j i>j处的密度肯定也为0。

对于 i < j i<j i<j时, f i , j ( x i , x j ) f_{i,j}(x_i,x_j) fi,j(xi,xj)可以看成 ∂ 2 F i , j ( x i , x j ) ∂ x i ∂ x j \frac{\partial^2F_{i,j}(x_i,x_j)}{\partial x_i \partial x_j} xixj2Fi,j(xi,xj),因此类比单次序统计量的情形,我们可以找到事件“ i − 1 i-1 i1个样本落在 ( − ∞ , x i ) (-\infty,x_i) (,xi),1个落在 ( x i , x i + Δ x i ) (x_i,x_i+\Delta x_i) (xi,xi+Δxi) j − i − 1 j-i-1 ji1个落在 ( x i + Δ x i , x j ) (x_i+\Delta x_i,x_j) (xi+Δxi,xj),1个落在 ( x j , x j + Δ x j ) (x_j, x_j+\Delta x_j) (xj,xj+Δxj) n − j n-j nj个落在 ( x j + Δ x j , ∞ ) (x_j+\Delta x_j,\infty) (xj+Δxj,)”。相对应地得到 f i , j ( x i , x j ) f_{i,j}(x_i,x_j) fi,j(xi,xj)的表达式:
f i , j ( x i , x j ) = C n i − 1 C n − i + 1 1 C n − i j − i − 1 C n − j + 1 1 I { x i < x j } [ F ( x i ) ] i − 1 [ F ( x j ) − F ( x i ) ] j − i − 1 [ 1 − F ( x j ) ] n − j f ( x i ) f ( x j ) = n ! ( i − 1 ) ! ( j − i − 1 ) ! ( n − j ) ! I { x i < x j } [ F ( x i ) ] i − 1 [ F ( x j ) − F ( x i ) ] j − i − 1 [ 1 − F ( x j ) ] n − j f ( x i ) f ( x j ) \begin{aligned} &f_{i,j}(x_i,x_j)\\ =&C_n^{i-1}C_{n-i+1}^1C_{n-i}^{j-i-1}C_{n-j+1}^{1}I_{\{x_i<x_j\}}\\&[F(x_i)]^{i-1}[F(x_j)-F(x_i)]^{j-i-1}[1-F(x_j)]^{n-j}f(x_i)f(x_j)\\ =&\frac{n!}{(i-1)!(j-i-1)!(n-j)!}I_{\{x_i<x_j\}}\\&[F(x_i)]^{i-1}[F(x_j)-F(x_i)]^{j-i-1}[1-F(x_j)]^{n-j}f(x_i)f(x_j) \end{aligned} ==fi,j(xi,xj)Cni1Cni+11Cniji1Cnj+11I{xi<xj}[F(xi)]i1[F(xj)F(xi)]ji1[1F(xj)]njf(xi)f(xj)(i1)!(ji1)!(nj)!n!I{xi<xj}[F(xi)]i1[F(xj)F(xi)]ji1[1F(xj)]njf(xi)f(xj)
这里 I A I_A IA为示性函数,在写分布、密度时不能遗漏。

特别地,对于 ( X ( 1 ) , X ( n ) ) (X_{(1)},X_{(n)}) (X(1),X(n))的联合密度,可以带入求得
f 1 , n ( x 1 , x n ) = n ( n − 1 ) f ( x 1 ) f ( x n ) [ F ( x n ) − F ( x 1 ) ] n − 2 I ( x 1 < x n ) f_{1,n}(x_1,x_n)=n(n-1)f(x_1)f(x_n)[F(x_n)-F(x_1)]^{n-2}I_{(x_1<x_n)} f1,n(x1,xn)=n(n1)f(x1)f(xn)[F(xn)F(x1)]n2I(x1<xn)

4.极差的分布

极差 R = X ( n ) − X ( 1 ) R=X_{(n)}-X_{(1)} R=X(n)X(1)的分布要用到随机向量的变换,这里先引入随机向量的变换定理。

  • ( X 1 , X 2 ) (X_1,X_2) (X1,X2)的密度为 p ( x 1 , x 2 ) p(x_1,x_2) p(x1,x2),现有两个随机变量,分别为, Y 1 = y 1 ( X 1 , X 2 ) , Y 2 = y 2 ( X 1 , X 2 ) Y_1=y_1(X_1,X_2),Y_2=y_2(X_1,X_2) Y1=y1(X1,X2),Y2=y2(X1,X2),其密度为 q ( y 1 , y 2 ) q(y_1,y_2) q(y1,y2)。如果这两个函数有唯一的反函数组 X 1 = x 1 ( Y 1 , Y 2 ) , X 2 = x 2 ( Y 1 , Y 2 ) X_1=x_1(Y_1,Y_2),X_2=x_2(Y_1,Y_2) X1=x1(Y1,Y2),X2=x2(Y1,Y2),且
    J = ∂ ( x 1 , x 2 ) ∂ ( y 1 , y 2 ) ≠ 0 J=\frac{\partial(x_1,x_2)}{\partial(y_1,y_2)}\neq0 J=(y1,y2)(x1,x2)=0
    则有 q ( y 1 , y 2 ) = p ( x 1 ( y 1 , y 2 ) , x 2 ( y 1 , y 2 ) ) ∣ J ∣ q(y_1,y_2)=p(x_1(y_1,y_2), x_2(y_1,y_2))|J| q(y1,y2)=p(x1(y1,y2),x2(y1,y2))J

这种情况下,令 R = X ( n ) − X ( 1 ) , V = X ( 1 ) R=X_{(n)}-X_{(1)},V=X_{(1)} R=X(n)X(1),V=X(1),则 X ( 1 ) = V , X ( n ) = R + V X_{(1)}=V,X_{(n)}=R+V X(1)=V,X(n)=R+V J = ∣ 0 1 1 1 ∣ = − 1 J=\left|\begin{array}{c}0&1\\1&1\end{array}\right|=-1 J=0111=1。代入公式如下:
p ( x 1 , x n ) = n ( n − 1 ) f ( x 1 ) f ( x n ) [ F ( x n ) − F ( x 1 ) ] n − 2 I ( x n > x 1 ) , x 1 ( a , b ) = b , x 2 ( a , b ) = a + b , q ( y 1 , y 2 ) = p ( x 1 ( y 1 , y 2 ) , x 2 ( y 1 , y 2 ) ) ∣ J ∣ = n ( n − 1 ) f ( y 1 ) f ( y 1 + y 2 ) [ F ( y 1 + y 2 ) − F ( y 2 ) ] n − 2 I ( y 1 > 0 ) f R ( y 1 ) = ∫ 0 ∞ q ( y 1 , y 2 ) d y 2 . p(x_1,x_n)=n(n-1)f(x_1)f(x_n)[F(x_n)-F(x_1)]^{n-2}I_{(x_n>x_1)},\\ x_1(a,b)=b,x_2(a,b)=a+b, \\ \begin{aligned} q(y_1,y_2)&=p(x_1(y_1,y_2),x_2(y_1,y_2))|J|\\ &=n(n-1)f(y_1)f(y_1+y_2)[F(y_1+y_2)-F(y_2)]^{n-2}I_{(y_1>0)} \end{aligned}\\ f_R(y_1)=\int_0^\infty q(y_1,y_2)dy_2. p(x1,xn)=n(n1)f(x1)f(xn)[F(xn)F(x1)]n2I(xn>x1),x1(a,b)=b,x2(a,b)=a+b,q(y1,y2)=p(x1(y1,y2),x2(y1,y2))J=n(n1)f(y1)f(y1+y2)[F(y1+y2)F(y2)]n2I(y1>0)fR(y1)=0q(y1,y2)dy2.
这就求得极差的密度 f R ( x ) = ∫ 0 ∞ q ( x , y 2 ) d y 2 f_R(x)=\int_0^\infty q(x,y_2)dy_2 fR(x)=0q(x,y2)dy2

5.均匀分布情形下的次序统计量

(标准)均匀分布: U ( 0 , 1 ) , f ( x ) = I ( 0 < x ≤ 1 ) , F ( x ) = x I ( 0 < x ≤ 1 ) + I ( x > 1 ) U(0,1),f(x)=I_{(0<x\leq1)},F(x)=xI_{(0<x\leq1)}+I_{(x>1)} U(0,1)f(x)=I(0<x1)F(x)=xI(0<x1)+I(x>1)。分布函数的意思是
F ( x ) = { 0 , x ≤ 0 , x , 0 < x ≤ 1 , 1 , x > 1. F(x)=\left\{ \begin{array}{l} 0,&x\leq0,\\ x,&0<x\leq1,\\ 1,&x>1. \end{array} \right. F(x)=0,x,1,x0,0<x1,x>1.
U ( 0 , 1 ) U(0,1) U(0,1)中抽取样本 ( X 1 , ⋯   , X n ) (X_1,\cdots,X_n) (X1,,Xn),次序统计量记为 X ( 1 ) , ⋯   , X ( n ) X_{(1)},\cdots,X_{(n)} X(1),,X(n),代入次序统计量的一般公式,可以计算得到
f k ( x ) = n ! ( n − k ) ! ( k − 1 ) ! x k − 1 ( 1 − x ) n − k I ( 0 < x < 1 ) f_k(x)=\frac{n!}{(n-k)!(k-1)!}x^{k-1}(1-x)^{n-k}I_{(0<x<1)} fk(x)=(nk)!(k1)!n!xk1(1x)nkI(0<x<1)
这里有 X ( k ) ∼ β ( k , n − k + 1 ) X_{(k)}\sim \beta(k, n-k+1) X(k)β(k,nk+1)

均匀分布下极差也是可以求的,将前面的 q ( y 1 , y 2 ) q(y_1,y_2) q(y1,y2)代入均匀分布的相关数据,得到
q ( y 1 , y 2 ) = n ( n − 1 ) y 1 n − 2 I ( 0 < y 1 ≤ 1 ) I ( 0 < y 1 + y 2 ≤ 1 ) I ( y 1 > 0 ) f R ( x ) = ∫ 0 1 − x n ( n − 1 ) x n − 2 I x > 0 d y 2 = n ( n − 1 ) x n − 2 ( 1 − x ) I ( x > 0 ) q(y_1,y_2)=n(n-1)y_1^{n-2}I_{(0<y_1\leq1)}I_{(0<y_1+y_2\leq1)}I_{(y_1>0)}\\ f_R(x)=\int_0^{1-x} n(n-1)x^{n-2}I_{x>0}dy_2=n(n-1)x^{n-2}(1-x)I_{(x>0)} q(y1,y2)=n(n1)y1n2I(0<y11)I(0<y1+y21)I(y1>0)fR(x)=01xn(n1)xn2Ix>0dy2=n(n1)xn2(1x)I(x>0)
注意,在代入密度函数和分布函数的时候不能漏掉示性函数,在这里示性函数决定了边缘密度式中的积分限,如果漏掉就算不出最终的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值