闭区间套定理证明实数集不可列

用闭区间套定理证明实数集是不可列的

闭区间套定理:如果 { [ a n , b n ] } \{[a_n,b_n]\} {[an,bn]}是一个区间套,即满足 [ a n + 1 , b n + 1 ] ⊂ [ a n , b n ] [a_{n+1},b_{n+1}]\sub [a_n,b_n] [an+1,bn+1][an,bn]的嵌套关系,且区间长度 b n − a n → 0 b_n-a_n\to 0 bnan0,则存在唯一的实数 ξ \xi ξ属于所有区间 [ a n , b n ] [a_n,b_n] [an,bn],且 ξ = lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n \xi =\lim\limits_{n\to \infty}a_n=\lim\limits_{n\to \infty}b_n ξ=nliman=nlimbn

注意闭区间套定理是在实数集上成立的,因此可以用它来证明实数集不可列。假如实数集可列,就可以找到一种排列方式 x 1 , x 2 , ⋯   , x n , ⋯ x_1,x_2,\cdots,x_n,\cdots x1,x2,,xn,,使得
R = { x 1 , x 2 , ⋯   , x n , ⋯   } \R=\{x_1,x_2,\cdots,x_n,\cdots\} R={x1,x2,,xn,}
不妨取 R \R R上一个集合 [ a 0 , b 0 ] [a_0,b_0] [a0,b0],将其三等分为三个闭区间
[ a 0 , a 0 + b 0 − a 0 3 ] , [ a 0 + b 0 − a 0 3 , b 0 − b 0 − a 0 3 ] , [ b 0 − b 0 − a 0 3 , b 0 ] ; \left[a_0,a_0+\frac {b_0-a_0}{3}\right],\left[a_0+\frac{b_0-a_0}3 ,b_0-\frac {b_0-a_0}{3}\right],\left[b_0-\frac{b_0-a_0}{3},b_0\right]; [a0,a0+3b0a0],[a0+3b0a0,b03b0a0],[b03b0a0,b0];
x 1 x_1 x1至多能同时属于其中的两个闭区间,那么一定有一个闭区间不包含 x 1 x_1 x1,记作
x 1 ∉ [ a 1 , b 1 ] , [ a 1 , b 1 ] ⊂ [ a 0 , b 0 ] ; x_1\notin [a_1,b_1],\quad [a_1,b_1]\sub [a_0,b_0]; x1/[a1,b1],[a1,b1][a0,b0];
继续对 [ a 1 , b 1 ] [a_1,b_1] [a1,b1]进行三等分, x 2 x_2 x2至多能同时属于其中两个闭区间,那么一定有一个闭区间不包含 x 2 x_2 x2,记作
x 2 ∉ [ a 2 , b 2 ] , [ a 2 , b 2 ] ⊂ [ a 1 , b 1 ] ; x_2\notin [a_2,b_2],\quad [a_2,b_2]\sub [a_1,b_1]; x2/[a2,b2],[a2,b2][a1,b1];
以此类推,得到一个闭区间列 [ a n , b n ] [a_n,b_n] [an,bn],由这个闭区间列的构造方式可以知道 [ a n + 1 , b n + 1 ] ⊂ [ a n , b n ] [a_{n+1},b_{n+1}]\sub [a_n,b_n] [an+1,bn+1][an,bn],且 b n − a n = b 0 − a 0 3 n → 0 b_n-a_n=\dfrac{b_0-a_0}{3^n}\to 0 bnan=3nb0a00,所以闭区间列 { [ a 0 , b 0 ] } \{[a_0,b_0]\} {[a0,b0]}是一个闭区间套,由闭区间套定理,存在唯一的实数 ξ \xi ξ,满足 ξ ∈ [ a n , b n ] , ∀ n ∈ N + \xi\in [a_n,b_n],\forall n\in \N_+ ξ[an,bn],nN+。但由于
ξ ∈ [ a 1 , b 1 ] , x 1 ∉ [ a 1 , b 1 ] ⇒ ξ ≠ x 1 ; ξ ∈ [ a 2 , b 2 ] , x 2 ∉ [ a 2 , b 2 ] ⇒ ξ ≠ x 2 ; ⋯ ξ ∈ [ a n , b n ] , x n ∉ [ a n , b n ] ⇒ ξ ≠ x n ; ⋯ \xi\in [a_1,b_1],x_1\notin [a_1,b_1]\Rightarrow \xi \ne x_1;\\ \xi\in [a_2,b_2],x_2\notin [a_2,b_2]\Rightarrow \xi \ne x_2;\\ \cdots\\ \xi\in [a_n,b_n],x_n\notin [a_n,b_n]\Rightarrow \xi\ne x_n;\\ \cdots ξ[a1,b1],x1/[a1,b1]ξ=x1;ξ[a2,b2],x2/[a2,b2]ξ=x2;ξ[an,bn],xn/[an,bn]ξ=xn;
ξ \xi ξ不是实数列 { x 1 , x 2 , ⋯   , x n , ⋯   } \{x_1,x_2,\cdots,x_n,\cdots\} {x1,x2,,xn,}中的任何一个,也就是 ξ ∉ R \xi \notin \R ξ/R,这显然是矛盾的,所以实数集一定是不可列的。

  • 12
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值