【时间序列分析】14.平稳序列的参数估计与白噪声检验

"本文详细介绍了平稳序列的参数估计方法,包括均值和自协方差函数的估计,以及对应的无偏性和相合性。在白噪声检验部分,通过χ^2chi^2χ2检验和Q(m)Q(m)Q(m)统计量来判断序列是否为白噪声,并给出了相关定理和应用条件。"
摘要由CSDN通过智能技术生成

十四、平稳序列的参数估计与白噪声检验

之前我们在理论上讨论过 A R ( p ) , M A ( q ) , A R M A ( p , q ) {\rm AR}(p),{\rm MA}(q),{\rm ARMA}(p,q) AR(p),MA(q),ARMA(p,q)模型的一些特征,都是从模型本身出发对其样本分布作出一些判断,然而在实际生活中,我们往往先碰到的是时间序列的观测样本,并且对其作出分析以后,才能判断其属于哪一种序列。之前我们讨论过以上三种模型的判定,还有模型参数的计算,都是在零均值的前提下,基于自协方差函数计算的,所以这里先讨论均值、自协方差函数的估计。

这部分的结论较多,推导较少。并且我们总假设 { ε t } \{\varepsilon_t\} {εt}是零均值白噪声, { ψ k } \{\psi_k\} {ψk}平方可和,因为我们讨论过的三种模型都具有这样的性质。

1.估计均值

x 1 , x 2 , ⋯   , x N x_1,x_2,\cdots,x_N x1,x2,,xN是平稳序列 { X t } \{X_t\} {Xt}的观测值,则我们一般用以下统计量来估计平稳序列的均值:
μ ^ = x ˉ N = 1 N ∑ k = 1 N x k . \hat\mu=\bar x_N=\frac 1N\sum_{k=1}^Nx_k. μ^=xˉN=N1k=1Nxk.
这种想法是很直观的,就像我们在数理统计中选择用样本均值作为总体均值的估计一样,并且这个估计量具有也具有许多良好的性质。

首先是无偏性,即 E μ ^ = μ {\rm E}\hat\mu =\mu Eμ^=μ,这是因为
E μ ^ = 1 N ∑ k = 1 N E ( x k ) = μ . {\rm E}\hat\mu=\frac 1N\sum_{k=1}^N{\rm E}(x_k)=\mu. Eμ^=N1k=1NE(xk)=μ.
然后是相合性,这指的是估计量随着样本容量的增加收敛于估计值的能力,也就是说具有相合性的统计量,有越大的样本容量,就有越大的估计精度。对于任何平稳序列, μ ^ \hat \mu μ^首先是均方收敛 μ \mu μ的,有
E ( μ ^ − μ ) 2 = E [ 1 N ∑ k = 1 N ( X k − μ ) ] 2 = 1 N 2 E ( ∑ k = 1 N ( X k − μ ) ) 2 = 1 N 2 ∑ k = − N N ( N − ∣ k ∣ ) γ k ≤ ∑ k = 1 N ∣ γ k ∣ → 0. \begin{aligned} {\rm E}(\hat \mu-\mu)^2=&{\rm E}\left[\frac 1N\sum_{k=1}^N(X_k-\mu) \right]^2\\ =&{\rm }\frac 1{N^2}{\rm E}\left(\sum_{k=1}^N(X_k-\mu) \right)^2\\ =&\frac 1{N^2}\sum_{k=-N}^N(N-|k|)\gamma_k \\ \le &\sum_{k=1}^N |\gamma_k|\to 0. \end{aligned} E(μ^μ)2===E[N1k=1N(Xkμ)]2N21E(k=1N(Xkμ))2N21k=NN(Nk)γkk=1Nγk0.
这里第二行到第三行的变换类似《九、 A R ( p ) {\rm AR}(p) AR(p)序列的谱密度及其他性质》中“周期图”部分的展开,这就得到了 μ ^ \hat \mu μ^均方收敛到 μ \mu μ的性质,自然也是依概率收敛的。事实上,如果 { X t } \{X_t\} {Xt}严平稳遍历序列,则 X ˉ N = μ ^ \bar X_N=\hat\mu XˉN=μ^还是 μ \mu μ强相合估计

知道 μ ^ \hat \mu μ^具有相合性后,自然想知道其收敛速度,这决定了我们的样本数量能够带来均值估计的精度。在重对数律成立时,得到收敛速度的阶数一般是
O ( 2 ln ⁡ ln ⁡ N N ) . O\left(\sqrt{\frac{2\ln \ln N}{N}} \right). O(N2lnlnN ).
重对数律指的是如下的定理:

重对数律定理:设 { ε t } \{\varepsilon_t\} {εt}是独立同分布的 W N ( 0 , σ 2 ) {\rm WN}(0,\sigma^2) WN(0,σ2),线性平稳序列 { X t } \{X_t\} {Xt}
X t = μ + ∑ k = − ∞ ∞ ψ k ε t − k X_t=\mu+\sum_{k=-\infty}^\infty\psi_k\varepsilon_{t-k} Xt=μ+k=ψkεtk
并且谱密度 f ( 0 ) ≠ 0 f(0)\ne 0 f(0)=0,则以下条件之一成立时:

  1. k → ∞ k\to \infty k时, ψ ∣ k ∣ \psi_{|k|} ψk以负指数阶收敛于0;
  2. 谱密度 f ( λ ) f(\lambda) f(λ) λ = 0 \lambda=0 λ=0处连续,且 E ∣ ε t ∣ r < ∞ {\rm E}|\varepsilon_t|^r<\infty Eεtr<对某个 r > 2 r>2 r>2成立;

重对数律成立为
lim ⁡ N → ∞ sup ⁡ N 2 ln ⁡ ln ⁡ N ( X ˉ N − μ ) = 2 π f ( 0 ) , a . s . \lim_{N\to \infty}\sup\sqrt{\frac{N}{2\ln \ln N}}(\bar X_N-\mu)=\sqrt{2\pi f(0)},\quad {\rm a.s.} Nlimsup2lnlnNN (XˉNμ)=2πf(0) ,a.s.

由于 { X t } \{X_t\} {Xt}满足重对数律条件时, { − X t } \{-X_t\} {Xt}也满足条件,所以同理有
lim ⁡ N → ∞ sup ⁡ N 2 ln ⁡ ln ⁡ N [ − ( X ˉ N − μ ) ] = 2 π f ( 0 ) , a . s . lim ⁡ N → ∞ inf ⁡ N 2 ln ⁡ ln ⁡ N ( X ˉ N − μ ) = − 2 π f ( 0 ) , a . s . \lim_{N\to \infty}\sup\sqrt{\frac{N}{2\ln \ln N}}[-(\bar X_N-\mu)]=\sqrt{2\pi f(0)},\quad {\rm a.s.} \\ \lim_{N\to \infty}\inf\sqrt{\frac{N}{2\ln \ln N}}(\bar X_N-\mu)=-\sqrt{2\pi f(0)},\quad {\rm a.s.} Nlimsup2lnlnNN [(XˉNμ)]=2πf(0) ,a.s.Nliminf2lnlnNN (XˉNμ)=2πf(0) ,a.s.
这就导致了
lim ⁡ N → ∞ N 2 ln ⁡ ln ⁡ N ( X ˉ − μ ) \lim_{N\to \infty}\sqrt{\frac{N}{2\ln \ln N}}(\bar X-\mu) Nlim2lnlnNN (Xˉμ)
几乎必然不存在,所以说 O ( 2 ln ⁡ ln ⁡ N N ) O(\sqrt{\frac{2\ln \ln N}{N}}) O(N2lnlnN )的收敛速度在一般情况下是不能再被改进的。显然,我们讨论过的三种序列都服从重对数律的条件。

最后我们讨论 μ ^ \hat \mu μ^的分布问题,它具有中心极限定理,定理内容如下:

μ ^ \hat \mu μ^的中心极限定理:设 { ε t } \{\varepsilon_t\} {εt}是独立同分布的 W N ( 0 , σ 2 ) {\rm WN}(0,\sigma^2) WN(0,σ2),线性平稳序列定义为
X t = μ + ∑ k = − ∞ ∞ ψ k ε t − k , t ∈ Z . X_t=\mu+\sum_{k=-\infty}^\infty \psi_k\varepsilon_{t-k},\quad t\in\Z. Xt=μ+k=ψkεtk,tZ.
如果 { X t } \{X_t\} {Xt}的谱密度 f ( λ ) = σ 2 2 π ∣ H ( e i λ ) ∣ 2 f(\lambda)=\frac{\sigma^2}{2\pi}|H(e^{{\rm i}\lambda})|^2 f(λ)=2πσ2H(eiλ)2 λ = 0 \lambda=0 λ=0处连续,且 f ( 0 ) ≠ 0 f(0)\ne 0 f(0)=0,则
N ( X ˉ N − μ ) → d N ( 0 , 2 π f ( 0 ) ) . \sqrt N(\bar X_N-\mu)\stackrel {\rm d}\to N(0,2\pi f(0)). N (XˉNμ)dN(0,2πf(0)).
特别当 { ψ k } \{\psi_k\} {ψk}绝对可和时 f ( λ ) f(\lambda) f(λ)连续,所以此时 N ( X ˉ N − μ ) \sqrt{N}(\bar X_N-\mu) N (XˉNμ)依分布收敛到 N ( 0 , 2 π f ( 0 ) ) N(0,2\pi f(0)) N(0,2πf(0)),且由反演公式,有
2 π f ( 0 ) = γ 0 + 2 ∑ j = 1 ∞ γ j . 2\pi f(0)=\gamma_0+2\sum_{j=1}^\infty \gamma_j. 2πf(0)=γ0+2j=1γj.

与分布的中心极限定理相同,这一般被用来构造参数 μ \mu μ的区间估计。

2.估计自协方差函数

x 1 , x 2 , ⋯   , x N x_1,x_2,\cdots,x_N x1,x2,,xN是平稳序列 { X t } \{X_t\} {Xt}的观测值,则我们一般用以下统计量来估计平稳序列的自协方差函数:
γ ^ k = 1 N ∑ j = 1 N − k ( x j − x ˉ N ) ( x j + k − x ˉ N ) , ρ ^ k = γ ^ k γ ^ 0 . \hat \gamma_k=\frac 1N\sum_{j=1}^{N-k}(x_j-\bar x_N)(x_{j+k}-\bar x_N),\\ \hat \rho_k=\frac{\hat \gamma_k}{\hat \gamma_0}. γ^k=N1j=1Nk(xjxˉN)(xj+kxˉN),ρ^k=γ^0γ^k.
注意到这里求和项的个数是 N − k N-k Nk,而取平均时除以的是 N N N。事实上如果只是要估计自协方差函数,除以的也可以是 N − k N-k Nk,但除以 N N N被普遍应用,一是因为它趋近于0的速度稍微快一些,另一个重要的原因是这样定义的样本自协方差阵 Γ ^ N \hat \Gamma_N Γ^N正定

类似均值的估计,对自协方差函数的估计量也要讨论它的几个相关性质。

首先是无偏性, γ ^ k \hat \gamma_k γ^k γ k \gamma_k γk渐进无偏估计而不是无偏的。假设 μ = E X 1 \mu={\rm E}X_1 μ=EX1,则令 Y t = X t − μ Y_t=X_t-\mu Yt=Xtμ,即对原序列进行零均值化,则 Y ˉ N = X ˉ N − μ \bar Y_N=\bar X_N-\mu YˉN=XˉNμ,所以
E γ ^ k = 1 N E ∑ j = 1 N − k ( X j − X ˉ N ) ( X j + k − X ˉ N ) = 1 N E ∑ j = 1 N − k ( Y j − Y ˉ N ) ( Y j + k − Y ˉ N ) = 1 N E ∑ j = 1 N − k [ Y j Y j + k − Y ˉ N ( Y j + Y j + k ) + Y ˉ N 2 ] , \begin{aligned} {\rm E}\hat \gamma_k=&\frac 1N{\rm E}\sum_{j=1}^{N-k}(X_j-\bar X_N)(X_{j+k}-\bar X_N) \\ =&\frac 1N{\rm E}\sum_{j=1}^{N-k}(Y_j-\bar Y_N)(Y_{j+k}-\bar Y_N) \\ =&\frac 1N{\rm E}\sum_{j=1}^{N-k}[Y_jY_{j+k}-\bar Y_N(Y_j+Y_{j+k})+\bar Y_N^2], \end{aligned} Eγ^k===N1Ej=1Nk(XjXˉN)(Xj+kXˉN)N1Ej=1Nk(YjYˉN)(Yj+kYˉN)N1Ej=1Nk[YjYj+kYˉN(Yj+Yj+k)+YˉN2],
并且由于均值是均方收敛的,所以 E Y ˉ N 2 → 0 {\rm E}\bar Y_N^2\to 0 EYˉN20;由Schwarz不等式有
E ∣ Y ˉ N ( Y j + k + Y j ) ∣ ≤ E Y ˉ N 2 E ( Y j + k + Y j ) 2 ≤ 4 E Y ˉ N 2 γ 0 → 0. {\rm E}|\bar Y_N(Y_{j+k}+Y_j)|\le \sqrt{{\rm E}\bar Y_N^2{\rm E}(Y_{j+k}+Y_j)^2}\le \sqrt{4{\rm E}\bar Y_N^2\gamma_0}\to 0. EYˉN(Yj+k+Yj)EYˉN2E(Yj+k+Yj)2 4EYˉN2γ0 0.
于是
E γ ^ k = 1 N ∑ j = 1 N − k [ γ k + o ( 1 ) ] = N − k N ( γ k + o ( 1 ) ) → γ k . {\rm E}\hat \gamma_k=\frac 1N\sum_{j=1}^{N-k}[\gamma_k+o(1)]=\frac{N-k}{N}(\gamma_k+o(1))\to \gamma_k. Eγ^k=N1j=1Nk[γk+o(1)]=NNk(γk+o(1))γk.
得到其渐进无偏性,显然 γ ^ k \hat \gamma_k γ^k不具有无偏性。

然后是相合性,对于严平稳遍历序列 { X t } \{X_t\} {Xt},其每个确定的 k k k γ ^ k \hat \gamma_k γ^k ρ ^ k \hat \rho_k ρ^k都分别是 γ k \gamma_k γk ρ k \rho_k ρk强相合估计

最后,为了给出 γ k \gamma_k γk的区间估计,依然考虑 γ ^ k \hat \gamma_k γ^k渐进分布,它比 μ ^ \hat \mu μ^的渐进分布更加复杂,这里只讨论线性平稳序列的 γ ^ k \hat \gamma_k γ^k。令 { ε t } \{\varepsilon_t\} {εt}为独立同分布 W N ( 0 , σ 2 ) {\rm WN}(0,\sigma^2) WN(0,σ2),实数列 { ψ k } \{\psi_k\} {ψk}平方可和,线性平稳序列定义为
X t = ∑ j = − ∞ ∞ ψ j ε t − j , t ∈ Z . X_t=\sum_{j=-\infty}^\infty \psi_j\varepsilon_{t-j},\quad t\in\Z. Xt=j=ψjεtj,tZ.
则其自协方差函数与谱密度分别是
γ k = σ 2 ∑ j = − ∞ ∞ ψ j ψ j + k , f ( λ ) = σ 2 2 π ∣ ∑ j = − ∞ ∞ ψ j e i j λ ∣ 2 . \gamma_k=\sigma^2\sum_{j=-\infty}^\infty \psi_j\psi_{j+k},\quad f(\lambda)=\frac{\sigma^2}{2\pi}\left|\sum_{j=-\infty}^\infty \psi_je^{{\rm i}j\lambda} \right|^2. γk=σ2j=ψjψj+k,f(λ)=2πσ2j=ψjeijλ2.

接下来直接给出相关的结论。

γ ^ k \hat \gamma_k γ^k的中心极限定理:如果 μ 4 = E ε 1 4 < ∞ \mu_4={\rm E}\varepsilon_1^4<\infty μ4=Eε14<,且 X t X_t Xt的谱密度平方可积: ∫ − π π f 2 ( λ ) d λ < ∞ \int_{-\pi}^\pi f^2(\lambda){\rm d}\lambda<\infty ππf2(λ)dλ<,则设 { W t } \{W_t\} {Wt}独立同分布于 N ( 0 , 1 ) N(0,1) N(0,1),对任何正整数 h h h,当 N → ∞ N\to \infty N时,有
N ( γ ^ 0 − γ 0 , ⋯   , γ ^ h − γ h ) → d ( ξ 0 , ξ 1 , ⋯   , ξ h ) , ξ j = ( M 0 γ j ) W 0 + ∑ t = 1 ∞ ( γ t + j + γ t − j ) W t , j ≥ 0 , M 0 = 1 σ 2 ( μ 4 − σ 4 ) 1 / 2 = 1 σ 2 ( E ε 1 4 − σ 4 ) 1 / 2 \sqrt N(\hat \gamma_0-\gamma_0,\cdots,\hat \gamma_h-\gamma_h)\stackrel {\rm d}\to (\xi_0,\xi_1,\cdots,\xi_h), \\ \xi_j=(M_0\gamma_j)W_0+\sum_{t=1}^\infty (\gamma_{t+j}+\gamma_{t-j})W_t,\quad j\ge0,\\ M_0=\frac{1}{\sigma^2}(\mu_4-\sigma^4)^{1/2}=\frac{1}{\sigma^2}({\rm E}\varepsilon_1^4-\sigma^4)^{1/2} N (γ^0γ0,,γ^hγh)d(ξ0,ξ1,,ξh),ξj=(M0γj)W0+t=1(γt+j+γtj)Wt,j0,M0=σ21(μ4σ4)1/2=σ21(Eε14σ4)1/2
ρ ^ k \hat\rho_k ρ^k的中心极限定理:条件同上,对任何正整数 h h h,当 N → ∞ N\to\infty N时,有
N ( ρ ^ 1 − ρ 1 , ⋯   , ρ ^ h − ρ h ) → d ( R 1 , ⋯   , R h ) , R j = ∑ t = 1 ∞ ( ρ t + j + ρ t − j − 2 ρ t ρ j ) W t , j ≥ 1. \sqrt N(\hat \rho_1-\rho_1,\cdots,\hat \rho_h-\rho_h)\stackrel {\rm d}\to (R_1,\cdots,R_h),\\ R_j=\sum_{t=1}^\infty(\rho_{t+j}+\rho_{t-j}-2\rho_t\rho_j)W_t,\quad j\ge 1. N (ρ^1ρ1,,ρ^hρh)d(R1,,Rh),Rj=t=1(ρt+j+ρtj2ρtρj)Wt,j1.
谱密度平方可积的等价条件:对于任意平稳序列 { X t } \{X_t\} {Xt},它的自协方差函数平方可和,等价于谱密度平方可积。因此只要 E ε 1 4 < ∞ {\rm E}\varepsilon_1^4<\infty Eε14<的线性平稳序列的自协方差函数平方可和,则中心极限定理成立。

应用于白噪声的推论:如果 { X t } \{X_t\} {Xt}是独立同分布的白噪声,则对任何正整数 h h h
N ( ρ ^ 1 , ⋯   , ρ ^ h ) → d N h ( 0 , I h ) . \sqrt N(\hat \rho_1,\cdots,\hat\rho_h)\stackrel {\rm d}\to N_h(0,I_h). N (ρ^1,,ρ^h)dNh(0,Ih).
如果追加 μ 4 = E X t 4 < ∞ \mu_4={\rm E}X_t^4<\infty μ4=EXt4<的条件,则
N ( γ ^ 0 , γ ^ 1 , ⋯   , γ ^ h ) → d σ 2 ( M 0 W 0 , W 1 , ⋯   , W h ) . \sqrt N(\hat \gamma_0,\hat\gamma_1,\cdots,\hat \gamma_h)\stackrel {\rm d}\to \sigma^2(M_0W_0,W_1,\cdots,W_h). N (γ^0,γ^1,,γ^h)dσ2(M0W0,W1,,Wh).

3.白噪声检验

我们在前面讨论到的模型都是白噪声的无穷滑动和,且对于建立的模型,我们总假定误差是服从白噪声的,因此,我们需要一种对于白噪声的检验。

白噪声的 χ 2 \chi^2 χ2检验是基于以下前提的: m m m个独立同分布标准正态随机变量的和服从 χ 2 ( m ) \chi^2(m) χ2(m)分布。由 ρ ^ \hat \rho ρ^的中心极限定理应用于白噪声的推论, N ( ρ ^ 1 , ⋯   , ρ ^ m ) → d N m ( 0 , I m ) \sqrt N(\hat \rho_1,\cdots,\hat \rho_m)\stackrel {\rm d}\to N_m(0,I_m) N (ρ^1,,ρ^m)dNm(0,Im),可以构造如下的统计量,它应该近似服从 χ 2 ( m ) \chi^2(m) χ2(m)分布:
χ ^ m 2 = d e f N ( ρ ^ 1 2 + ρ ^ 2 2 + ⋯ + ρ ^ m 2 ) → d χ 2 ( m ) . \hat \chi^2_m\stackrel {\rm def}=N(\hat \rho_1^2+\hat \rho_2^2+\cdots +\hat \rho_m^2)\stackrel {\rm d}\to \chi^2(m). χ^m2=defN(ρ^12+ρ^22++ρ^m2)dχ2(m).
这里选择的 m m m不能过大,一般取 m ≤ N m\le \sqrt N mN ,接下来就可以按照 χ 2 \chi^2 χ2分布的假设检验来判断序列是否是白噪声。

此外,还有一种简单的判别方法,是计算
Q ( m ) = 1 m # { j ∣ N ∣ ρ ^ j ∣ ≥ 1.96 , 1 ≤ j ≤ m } , Q(m)=\frac 1m \#\{j|\sqrt N|\hat \rho_j|\ge 1.96,\quad 1\le j\le m \}, Q(m)=m1#{jN ρ^j1.96,1jm},
这里 # A \#A #A代表 A A A中元素的数量,当 Q ( m ) ≥ 0.05 Q(m)\ge 0.05 Q(m)0.05时就拒绝序列是白噪声这一假设。

回顾总结

  1. 对于平稳序列 { X t } \{X_t\} {Xt},用 μ ^ = x ˉ N = 1 N ∑ j = 1 N x j \hat \mu=\bar x_N=\frac 1N\sum_{j=1}^N x_j μ^=xˉN=N1j=1Nxj作为平稳序列均值 μ \mu μ的估计量,它具有无偏性,均方相合性。

  2. μ ^ \hat \mu μ^的收敛速度是 O ( 2 ln ⁡ ln ⁡ N N ) O(\sqrt{\frac{2\ln \ln N}{N}}) O(N2lnlnN ),在重对数律的限制下,这个速度一般不能再被改进。重对数律的先决条件是 f ( 0 ) ≠ 0 f(0)\ne 0 f(0)=0,且 ψ ∣ k ∣ \psi_{|k|} ψk以负指数阶收敛到0或 f ( λ ) f(\lambda) f(λ) λ = 0 \lambda=0 λ=0处连续且 E ∣ ε t ∣ r < ∞ {\rm E}|\varepsilon_t|^r<\infty Eεtr<对某个 r > 2 r>2 r>2成立。

  3. μ ^ \hat \mu μ^的中心极限定理: N ( μ ^ − μ ) → d N ( 0 , 2 π f ( 0 ) ) \sqrt N(\hat \mu-\mu)\stackrel {\rm d}\to N(0,2\pi f(0)) N (μ^μ)dN(0,2πf(0)),前提条件是 f ( λ ) f(\lambda) f(λ) λ = 0 \lambda=0 λ=0连续且 f ( 0 ) ≠ 0 f(0)\ne 0 f(0)=0,此时
    2 π f ( 0 ) = γ 0 + 2 ∑ j = 1 ∞ γ j . 2\pi f(0)=\gamma_0+2\sum_{j=1}^\infty \gamma_j. 2πf(0)=γ0+2j=1γj.

  4. 对于平稳序列 { X t } \{X_t\} {Xt},用 γ ^ k = 1 N ∑ j = 1 ∞ ( x j − x ˉ N ) ( x j + k − x ˉ N ) \hat \gamma_k=\frac 1N\sum_{j=1}^{\infty}(x_j-\bar x_N)(x_{j+k}-\bar x_N) γ^k=N1j=1(xjxˉN)(xj+kxˉN)作为 γ k \gamma_k γk的估计量,它具有渐进无偏性;用 ρ ^ k = γ ^ k / γ ^ 0 \hat \rho_k=\hat \gamma_k/\hat \gamma_0 ρ^k=γ^k/γ^0作为 ρ k \rho_k ρk的估计量。 γ ^ k \hat \gamma_k γ^k ρ ^ k \hat \rho_k ρ^k也有相应的中心极限定理。

  5. 对于严平稳遍历序列 { X t } \{X_t\} {Xt} μ ^ \hat \mu μ^ γ ^ k \hat \gamma_k γ^k都是 μ , γ k \mu,\gamma_k μ,γk的强相合估计。

  6. 白噪声检验可以构造 χ ^ m 2 = N ( ρ ^ 1 2 + ⋯ + ρ ^ m 2 ) → d χ 2 ( m ) \hat \chi^2_m=N(\hat\rho_1^2+\cdots+\hat \rho_m^2)\stackrel {\rm d}\to \chi^2(m) χ^m2=N(ρ^12++ρ^m2)dχ2(m),也可以使用以下估计量:
    Q ( m ) = 1 m # { j ∣ N ∣ ρ j ∣ ≥ 1.96 , 1 ≤ j ≤ m } , Q(m)=\frac 1m\#\{j|\sqrt N|\rho_j|\ge1.96,\quad 1\le j\le m \}, Q(m)=m1#{jN ρj1.96,1jm},

    Q ( m ) > 0.05 Q(m)>0.05 Q(m)>0.05时拒绝白噪声假设。这里都要求 m ≤ N m\le \sqrt N mN

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值