浅显易懂的A*算法解释

该篇博客由iOS课程团队的Johann Fradj发布,他现在是一个全职开发ios的开发者.他是Hot Apps Factory(其是App Cooker的创造者)的共同创建者.

这里写图片描述

学习A*寻路算法是如何实现的!

你是否在你的游戏中想要怪物或者玩家移动到特定的地点,同时避免墙和障碍物?

如果是,读一读这篇课程,它将向你展示你能用A*寻路算法做些什么!

在网上已经有一些关于A*寻路算法的文章,不过几乎所有的都是面向已经知道基础的有经验的开发者.

本课程将从基本开始将你渐渐带入门径.我们将一步步讨论A*算法是如何工作的,并且包括了大量的图片和例子去示意整个过程.

不管你使用神马编程语言或平台,你都会发现本课程解释的算法对于任何语言来说都是有帮助的.稍后,我们将在课程之后展示一个用Cocos2D实现的iPhone game的例子.

现在泡上一杯香浓可口的咖啡再配上一些美味的零食,让我们开始旅程吧! :]

一只寻路的猫咪(本猫猪也是路痴,猫猪注.)

让我们想象我们有一个游戏,游戏中一只猫咪想要找到得到骨头的路径.

“为毛一只在世界上的猫咪想要一根骨头呢?!”你可能会这样想.好吧,在我们的游戏中,这是一只狡猾的猫咪,它想将骨头交给狗狗们,所以狗狗们不会咬它啦! :]

所以想象下图中的猫咪想要找到到达骨头的最短路径:

这里写图片描述

不幸的是,这只猫咪不能直接从当前位置到达骨头,因为途中有坚固的墙壁,因为它在游戏中不是幽灵猫咪!

而且这只猫咪非常的懒,它总是像找到最短的路径,以便还有劲回家去找它的母猫缠绵 ;-)

但是我们如何写一个算法来使猫咪得偿所愿呢?救世主A*算法来啦!

简化搜索区域

在寻路中的第一步是使得整个搜索区域简化的可被简单操作.

这将取决于具体的游戏.举个栗子,我们可以按像素来划分搜索区域,但是它对于我们基于瓦块地图的游戏来说的粒度太高(而且毫无必要).

作为替代,我们将使用瓦块(一个正方形)作为寻路算法的基本单元.用其他形状也是可以的(比如三角形或者六边形),但是正方形在这里对于我们的需求来说最适合并且也最简单.

像那样划分,我们的搜索区域可以简单的描述成地图瓦片的2维数组.所以如果关卡的地图是25*25块瓦片,则我们的搜索区域将为一个包括625个正方形的数组.如果我们将地图按像素划分,则搜索区域将是一个包含640,000个正方形的数组(每个瓦片是32*32个像素)!

所以让我们根据屏幕截图开始将搜索区域按瓦片划分为数组表示(在我们这个简单的例子中,地图的瓦片尺寸为 7x6 = 42块)”

这里写图片描述

开放和闭合列表

现在我们已经创建了一个简单的搜索区域,让我们讨论一下A*算法是如何工作的.

除了懒以外,我们的猫咪的记性也不太好,所以它需要2张表:

  1. 一张记录所有在寻找最短路径中被考虑到的正方形(称之为开放列表 open list)
  2. 另一张记录那些不需要再次考虑的正方形(称之为闭合列表 closed list)

猫咪从添加自己的当前位置(我们将这个开始位置称之为点A)到闭合列表中开始.然后,它添加所有当前位置相邻的可达瓦片到开放列表中.

这里有一个在空白区域如何添加例子的示意图(绿色表示在开放列表中):

这里写图片描述

现在这只猫咪需要确定这些选择中的哪一个是最短路径,但是如何选择呢?

在A*寻路算法中,这通过给每一个正方形一个分值来确定,这称之为路径评分.让我们在下一篇中看一下它是如何工作的!

路径评分

我们将给每一个正方形一个分值 G + H :

  • G是从开始点A到当前方块的移动花费.所以对于一个开始A点的邻居方块来说,值为1,但是离开开始点越远它的值会越大.
  • H是当前方块到目的方块(我们称该点为有骨头的点B!)的估计移动花费,这通常称之为启发式的算法,因为我们并不真的清楚花费是多少 — 它仅是一个估计值.

你可能会奇怪”移动花费”的意思.在这个游戏中它十分的简单 — 就是(途经)方块的数量.

不管如何,记住你可以将我们的游戏变得不一样.比如说:

  • 如果你允许对角线移动,你可能会将对角线移动的花费设置的高一点.
  • 如果你有不同的地形,你可能将通过它们的花费设置的不一样 — 举个栗子:沼泽,水或者是猫女的海报 ;-)

这就是大体上的想法 — 现在我们进一步研究如何去计算G和H的值.

更多的关于G

回忆一下,G是从开始点A到当前方块的移动花费(在这个游戏中就是经过方块的数量).

为了计算G,我们需要将其父方块(该方块表示我们从哪来)的G取出然后加1.因此,每个方块的G值将表示从点A到自身方块一般路径总的花费.

举个栗子,以下图片展示了到达2个不同骨头的2个不同路径,每个方块的G值都列在方块中:

这里写图片描述

更多的关于H

回忆以下,H是当前方块到目的地估计的移动花费(在我们的游戏中也就是途经方块的数量).

估计移动花费越接近于实际的花费,则最终路径将会更准确.如果估计发生了偏差,可能产生的路径将不是最短的(但可能还是会很接近).这个主题有点复杂,所以在该系列课程中我们不会详述,但是我会在文章结尾提供一个链接文章,它解释的非常好.

简单来说,我们将使用”曼哈顿距离方法”(同样称之为”曼哈顿长度”或者是”街区距离”),它仅仅计算到达B点水平和垂直的方块数量,但并不考虑任何障碍物或不同的地形.

举个栗子,这里有一张图展示了使用”街区距离”去估计从不同的起始位置到目的位置的H值(显示在空白处):

这里写图片描述

 

关于A*算法

现在你该知道如何计算每一个方块的分值了(我们将称之为F,它等于G+H),让我们看看A*算法是如何工作的.

这只猫咪将用以下重复的步骤来找到最短路径:

  1. 从开发列表中取得分值最小的方块,我们称之为方块S.
  2. 将方块S从开发列表中删除,并且添加到闭合列表中.
  3. 对于方块S的每一个可到达的邻居方块T: 
    A.如果T在闭合列表中:忽略它. 
    B.如果T不在开发列表中:把它添加进来并计算它的分值. 
    C.如果T已经存在于开放列表中:检查其F值是否比我们使用当前生成的路径要小.如果是,更新它的分值和它父方块.

如果你有点混乱也不用担心 — 我们将用一个例子一步步的像你展示它是如何工作的! :]

猫咪的路径

让我们通过一个例子看看这只懒猫咪是如何找到骨头的.

在下面的图示中,我已经将对应的值列出来了(F = G + H):

  • F(方块的分值):左上角
  • G(从A点到方块的花费):左下角
  • H(从方块到B点的估计花费):右下角

同样,箭头显示出到达该方块的移动方向(指向其父方块.猫猪注).

最终,对于每一步来说,红色方块指示闭合列表,绿色方块指示开发列表.

OK,让我们开始吧!

步骤1

在第一步中,这只猫咪确定其起始位置(点A)的可到的达邻居方块,计算他们的F分值,然后将它们添加到开放列表中:

这里写图片描述

你可以看到每一个方块中列出了H值(2个为6,一个为4).我建议根据”街区距离”算法自己计算一下,确保你理解这部分是如何工作的.

同样要注意的是F值(左上角)正好是G+H的和(左下角和右下角).

步骤2

接下来,猫咪选择最小分值的方块,将其添加到闭合列表中去,并且获得他的邻居方块.

这里写图片描述

所以你将看到最小分值方块的F值为4,我们试图将所有它的邻居瓦块添加到开发列表中(并且计算它们的分值),除非它不能被添加(因为它已经在闭合列表中了)或者它是不可到达的(比如墙壁).

注意这里有2个新的瓦块被添加到开放列表中,G值被加1,因为从起始位置到它们有2个瓦块的距离.你可能想去用”街区距离”算法计算一下以确保你懂了了这些新添加瓦块的H值是如何计算的.

步骤3

我们再一次选择最小F值(5)的瓦块去继续迭代:

这里写图片描述

这时,只有一个可能的瓦块被添加到开放列表中,因为一个瓦块已经存在于闭合列表,两个瓦块是墙壁.

步骤4

现在我们遇到了一个有趣的情况.正如你在前一张图中看到的,这里有4个方块,它们的F值都是相同的7 — 我们该怎么办呢?!

这里有很多种解决方案可以使用,但是一个简单(也是快速的)的方法是保持跟随最近被添加到开放列表中的瓦块.所以我们从最近的瓦块继续:

这里写图片描述

这次有2快瓦块是邻接且可到达的,我们像往常那样计算它们的分值.

步骤5

我们再一次面临选择最小分值的(7)瓦块,同样选择最近添加的瓦块:

这里写图片描述

只有1个可能的瓦块被添加.我们离终点越来越近了!

步骤6

你现在已经有经验了!我打赌你可以像下图那样猜出接下里的步骤:

这里写图片描述

我们几乎完成了,但是这次你可以看到,这里实际我们可以从2条到骨头的最短路径中选择:

这里写图片描述

在我们的例子中有2条不同的最短路径:

  • 1-2-3-4-5-6
  • 1-2-3-4-5-7

我们选择哪条无所谓,由后面实际的实现代码来决定.

步骤7

让我们再一次枚举一遍这些方块:

这里写图片描述

Aha,骨头现在在开放列表中了!

步骤8

此时目的方块在开放列表中,算法将其添加到闭合列表中去:

这里写图片描述

然后算法要做的只是回退去计算出最终的路径!

这里写图片描述

 

一只没有远见的猫咪

在上面的例子中,我们看到猫咪在选择最短路径的时候,它总是选择最好的方块(在未来最短路径中的一块) — 就像他它是一只有远见的猫咪一样!

但是如果这只猫咪不总是头脑清楚的去选择第一个添加到列表中的方块时会发生什么呢?

这里有一张示意图显示了这些被用在该处理过程中的方块.你将看到猫咪会尝试更多的方块,但是它仍然能找到一条最短的路径(不一定和前面相同,但是等效的):

这里写图片描述

上图中红色方块并不表示最短路径,它仅表示在某些点上选择的”S”方块.

我建议你检查上图并且视图跟随遍历它.这次,你将发现无论怎样”最坏的”的路径被选择,在最后你仍然可以得到一条最短的路径!

所以你可以看到跟随”错误”的方块也没有关系,在最终你仍然可以得到最短路径,即使你会经历更多次的迭代.

在我们的实现中,我们将按以下算法将方块添加到开放列表中去:

  • 邻居方块将按以下顺序返回:上/左/下/右.
  • 一个具有相同分值的方块将被添加到开放列表中所有相同分值相同方块的最后面(所以第一个添加的将第一个被猫咪取得).

这里是一张回溯的示意图:

这里写图片描述

最短路径通过开始从目的地回退到其父方块来建立起来(比如:在目的地我们可以看到箭头指向右侧,所以该方块的父方块在它的左侧).

最终,我们可以通过下面的伪代码来合成猫咪的处理.它被写为Objective-C,但是你可以用任何语言实现:

  1. [openList add:originalSquare]; // start by adding the original position to the open list

  2. do {

  3. currentSquare = [openList squareWithLowestFScore]; // Get the square with the lowest F score

  4.  
  5. [closedList add:currentSquare]; // add the current square to the closed list

  6. [openList remove:currentSquare]; // remove it to the open list

  7.  
  8. if ([closedList contains:destinationSquare]) { // if we added the destination to the closed list, we've found a path

  9. // PATH FOUND

  10. break; // break the loop

  11. }

  12.  
  13. adjacentSquares = [currentSquare walkableAdjacentSquares]; // Retrieve all its walkable adjacent squares

  14.  
  15. foreach (aSquare in adjacentSquares) {

  16.  
  17. if ([closedList contains:aSquare]) { // if this adjacent square is already in the closed list ignore it

  18. continue; // Go to the next adjacent square

  19. }

  20.  
  21. if (![openList contains:aSquare]) { // if its not in the open list

  22.  
  23. // compute its score, set the parent

  24. [openList add:aSquare]; // and add it to the open list

  25.  
  26. } else { // if its already in the open list

  27.  
  28. // test if using the current G score make the aSquare F score lower, if yes update the parent because it means its a better path

  29.  
  30. }

  31. }

  32.  
  33. } while(![openList isEmpty]); // Continue until there is no more available square in the open list (which means there is no path)

你有没有小激动想要实现一下?!在下一篇课程中,我们将完全实现它!

接下来呢?

恭喜,你现在了解了基本的A*寻路算法!如果你想要从这里学到更多内容,我推荐你阅读 Amit’s A* Pages.

在本系列的下一篇课程中,我们将在一个简单的Cocos2D地图游戏中实现A*算法!(之前猫猪写过的 Cocos2D将v1.0的tileMap游戏转换到v3.4中一例系列博文即是前奏,大家可以先看一下 ;)

与此同时,如果你有关于A*算法的任何问题,请加入下面的讨论中来!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值