通俗易懂地理解卷积

作者:palet
链接:https://www.zhihu.com/question/22298352/answer/637156871
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

        卷积这个概念,很早以前就学过,但是一直没有搞懂。教科书上通常会给出定义,给出很多性质,也会用实例和图形进行解释,但究竟为什么要这么设计,这么计算,背后的意义是什么,往往语焉不详。作为一个学物理出身的人,一个公式倘若倘若给不出结合实际的直观的通俗的解释(也就是背后的“物理”意义),就觉得少了点什么,觉得不是真的懂了。

         ​并且也解释了,先对g函数进行翻转,相当于在数轴上把g函数从右边褶到左边去,也就是卷积的“卷”的由来。

        然后再把g函数平移到n,在这个位置对两个函数的对应点相乘,然后相加,这个过程是卷积的“积”的过程。

        这个只是从计算的方式上对公式进行了解释,从数学上讲无可挑剔,但进一步追问,为什么要先翻转再平移,这么设计有何用意?还是有点费解。

        在知乎,已经很多的热心网友对卷积举了很多形象的例子进行了解释,如卷地毯、丢骰子、打耳光、存钱等等。读完觉得非常生动有趣,但过细想想,还是感觉有些地方还是没解释清楚,甚至可能还有瑕疵,或者还可以改进(这些后面我会做一些分析)。

带着问题想了两个晚上,终于觉得有些问题想通了,所以就写出来跟网友分享,共同学习提高。不对的地方欢迎评论拍砖。。。

明确一下,这篇文章主要想解释两个问题:

1. 卷积这个名词是怎么解释?“卷”是什么意思?“积”又是什么意思?

2. 卷积背后的意义是什么,该如何解释?

考虑的应用场景

为了更好地理解这些问题,我们先给出两个典型的应用场景:

1. 信号分析

一个输入信号f(t),经过一个线性系统(其特征可以用单位冲击响应函数g(t)描述)以后,输出信号应该是什么?实际上通过卷积运算就可以得到输出信号。

2. 图像处理

输入一幅图像f(x,y),经过特定设计的卷积核g(x,y)进行卷积处理以后,输出图像将会得到模糊,边缘强化等各种效果。

对卷积的理解

        对卷积这个名词的理解:所谓两个函数的卷积,本质上就是先将一个函数翻转,然后进行滑动叠加。

        在连续情况下,叠加指的是对两个函数的乘积求积分,在离散情况下就是加权求和,为简单起见就统一称为叠加。

        整体看来是这么个过程:

翻转——>滑动——>叠加——>滑动——>叠加——>滑动——>叠加.....

        多次滑动得到的一系列叠加值,构成了卷积函数。

        卷积的“卷”,指的的函数的翻转,从 g(t) 变成 g(-t) 的这个过程;同时,“卷”还有滑动的意味在里面(吸取了网友李文清的建议)。如果把卷积翻译为“褶积”,那么这个“褶”字就只有翻转的含义了。

        卷积的“积”,指的是积分/加权求和。

        有些文章只强调滑动叠加求和,而没有说函数的翻转,我觉得是不全面的;有的文章对“卷”的理解其实是“积”,我觉得是张冠李戴。

        对卷积的意义的理解:

        1. 从“积”的过程可以看到,我们得到的叠加值,是个全局的概念。以信号分析为例,卷积的结果是不仅跟当前时刻输入信号的响应值有关,也跟过去所有时刻输入信号的响应都有关系,考虑了对过去的所有输入的效果的累积。在图像处理的中,卷积处理的结果,其实就是把每个像素周边的,甚至是整个图像的像素都考虑进来,对当前像素进行某种加权处理。所以说,“积”是全局概念,或者说是一种“混合”,把两个函数在时间或者空间上进行混合。

        2. 那为什么要进行“卷”?直接相乘不好吗?我的理解,进行“卷”(翻转)的目的其实是施加一种约束,它指定了在“积”的时候以什么为参照。在信号分析的场景,它指定了在哪个特定时间点的前后进行“积”,在空间分析的场景,它指定了在哪个位置的周边进行累积处理。

举例说明

下面举几个例子说明为什么要翻转,以及叠加求和的意义。

例1:信号分析

如下图所示,输入信号是 f(t) ,是随时间变化的,。系统响应函数是 g(t) ,图中的响应函数是随时间指数下降的,它的物理意义是说:如果在 t=0 的时刻有一个输入,那么随着时间的流逝,这个输入将不断衰减。换言之,到了 t=T时刻,原来在 t=0 时刻的输入f(0)的值将衰减为f(0)g(T)。

​        上述例子更简单的表述为,f是输入,其对应的输出或者响应是g(t),而响应随着时间的变化也会发生变化,比如说,f是一个脉冲信号,输出g是脉冲信号的强度。很显然,脉冲信号的强度随着时间的变化而变化,也就是g(t)。对于任何一个单位脉冲,自它发出之后,它的信号强度随着t的变化是相同的。现在问,在多个时刻发出的脉冲,在某个具体时刻k的的脉冲信号强度是多少。这个就需要计算上述多个时刻发生的脉冲,到了k时刻的强度,然后把这些强度加起来。如果发出的脉冲是个连续或者离散的,并且每个脉冲的强度不同,那么输入也可以表示成一个随时间变化的函数。只不过f(t)表示在t时刻发出的脉冲的强度。g(t)表示在0时刻发出的单位脉冲在t时刻的强度,也就是说g(t)是f(0)/||f(0)||脉冲在t时刻的观测值或者输出。那么对于[0,t]这个时间区间内,所有发生的脉冲,在t时刻的输出的叠加就是我们想要的结果了。要分别找到f(k) 在t时刻的响应f(k)*g(t-k)的累计(因为g(t)表示的是0时刻发出的单位脉冲在不同时刻的强度值,f(k)表示k时刻发出的脉冲值,可能并不是单位脉冲),k\in [0,t],这里就需要遍历所有的满足条件的k了。这里之所以说单位脉冲f(k)/||f(k)||在t时刻的响应是g(t-k)而不是g(t),就是因为g(t)是f(0)/||f(0)||脉冲在t时刻的输出,现在f(k)/||f(k)||表示的是k时刻发出的单位脉冲,其到t时刻只有t-k时间段而已,所以只能是g(t-k)。

​​        考虑到信号是连续输入的,也就是说,每个时刻都有新的信号进来,所以,最终输出的是所有之前输入信号的累积效果。如下图所示,在T=10时刻,输出结果跟图中带标记的区域整体有关。其中,f(10)因为是刚输入的,所以其输出结果应该是f(10)g(0),而时刻t=9的输入f(9),只经过了1个时间单位的衰减,所以产生的输出应该是 f(9)g(1),如此类推,即图中虚线所描述的关系。这些对应点相乘然后累加,就是T=10时刻的输出信号值,这个结果也是f和g两个函数在T=10时刻的卷积值。

        ​​显然,上面的对应关系看上去比较难看,是拧着的,所以,我们把g函数对折一下,变成了g(-t),这样就好看一些了。看到了吗?这就是为什么卷积要“卷”,要翻转的原因,这是从它的物理意义中给出的。

​​上图虽然没有拧着,已经顺过来了,但看上去还有点错位,所以再进一步平移T个单位,就是下图。它就是本文开始给出的卷积定义的一种图形的表述:

​​        所以,在以上计算T时刻的卷积时,要维持的约束就是: t+ (T-t) = T 。这种约束的意义,大家可以自己体会。

例2:丢骰子

在本问题 如何通俗易懂地解释卷积?中排名第一的 马同学在中举了一个很好的例子(下面的一些图摘自马同学的文章,在此表示感谢),用丢骰子说明了卷积的应用。

要解决的问题是:有两枚骰子,把它们都抛出去,两枚骰子点数加起来为4的概率是多少?

​​分析一下,两枚骰子点数加起来为4的情况有三种情况:1+3=4, 2+2=4, 3+1=4

因此,两枚骰子点数加起来为4的概率为:

​​写成卷积的方式就是:​

​​在这里我想进一步用上面的翻转滑动叠加的逻辑进行解释。

首先,因为两个骰子的点数和是4,为了满足这个约束条件,我们还是把函数 g 翻转一下,然后阴影区域上下对应的数相乘,然后累加,相当于求自变量为4的卷积值,如下图所示:

​​进一步,如此翻转以后,可以方便地进行推广去求两个骰子点数和为 n 时的概率,为f g的卷积 f*g(n),如下图所示:​

​​        由上图可以看到,函数 g 的滑动,带来的是点数和的增大。这个例子中对f和g的约束条件就是点数和,它也是卷积函数的自变量。有兴趣还可以算算,如果骰子的每个点数出现的概率是均等的,那么两个骰子的点数和n=7的时候,概率最大。
 

例3:图像处理

还是引用知乎问题 如何通俗易懂地解释卷积?中 马同学的例子。图像可以表示为矩阵形式(下图摘自马同学的文章):

对图像的处理函数(如平滑,或者边缘提取),也可以用一个g矩阵来表示,如:

        从卷积定义来看,应该是在x和y两个方向去累加(对应上面离散公式中的i和j两个下标),而且是无界的,从负无穷到正无穷。可是,真实世界都是有界的。例如,上面列举的图像处理函数g实际上是个3x3的矩阵,意味着,在除了原点附近以外,其它所有点的取值都为0。考虑到这个因素,上面的公式其实退化了,它只把坐标(u,v)附近的点选择出来做计算了。所以,真正的计算如下所示:

​​首先我们在原始图像矩阵中取出(u,v)处的矩阵:

         然后将图像处理矩阵翻转(这个翻转有点意思,可以有几种不同的理解,其效果是等效的:(1)先沿x轴翻转,再沿y轴翻转;(2)先沿x轴翻转,再沿y轴翻转;),如下:

原始矩阵:

        请注意,以上公式有一个特点,做乘法的两个对应变量a,b的下标之和都是(u,v),其目的是对这种加权求和进行一种约束。这也是为什么要将矩阵g进行翻转的原因。以上矩阵下标之所以那么写,并且进行了翻转,是为了让大家更清楚地看到跟卷积的关系。这样做的好处是便于推广,也便于理解其物理意义。实际在计算的时候,都是用翻转以后的矩阵,直接求矩阵内积就可以了。

        以上计算的是(u,v)处的卷积,延x轴或者y轴滑动,就可以求出图像中各个位置的卷积,其输出结果是处理以后的图像(即经过平滑、边缘提取等各种处理的图像)。

        再深入思考一下,在算图像卷积的时候,我们是直接在原始图像矩阵中取了(u,v)处的矩阵,为什么要取这个位置的矩阵,本质上其实是为了满足以上的约束。因为我们要算(u,v)处的卷积,而g矩阵是3x3的矩阵,要满足下标跟这个3x3矩阵的和是(u,v),只能是取原始图像中以(u,v)为中心的这个3x3矩阵,即图中的阴影区域的矩阵。

        推而广之,如果如果g矩阵不是3x3,而是7x7,那我们就要在原始图像中取以(u,v)为中心的7x7矩阵进行计算。由此可见,这种卷积就是把原始图像中的相邻像素都考虑进来,进行混合。相邻的区域范围取决于g矩阵的维度,维度越大,涉及的周边像素越多。而矩阵的设计,则决定了这种混合输出的图像跟原始图像比,究竟是模糊了,还是更锐利了。

        比如说,如下图像处理矩阵将使得图像变得更为平滑,显得更模糊,因为它联合周边像素进行了平均处理:

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我会尽力用通俗易懂的语言来释Transformer。 Transformer是一种用于处理序列数据的模型,它在自然语言处理领域有着重要的应用,比如机器翻译、文本生成等任务。 传统的序列模型,比如循环神经网络(RNN)和长短时记忆网络(LSTM),在处理长序列时可能会面临信息传递不足或者梯度消失等问题。而Transformer则采用了一种全新的架构,它不依赖于循环或者卷积操作,而是利用了自注意力机制(Self-Attention)。 自注意力机制可以帮助模型在处理序列时更好地关注不同位置之间的依赖关系。在Transformer中,输入序列会通过多层的注意力模块进行处理。每个注意力模块都包含了多头注意力机制,它能够同时关注输入序列中不同位置的信息。这样一来,模型可以更好地理解输入序列中不同位置之间的关系,并将这些关系融合到特征表示中。 除了自注意力机制,Transformer还引入了残差连接和层归一化来加强模型的训练效果和稳定性。残差连接可以帮助信息在模型中更快地传播,层归一化则可以对每一层的输入进行归一化,有助于加速训练过程。 Transformer的优势在于能够并行计算,因为自注意力机制可以同时计算不同位置的注意力权重。这使得Transformer在处理长序列时更加高效,并且能够处理更多的输入信息。 要掌握Transformer的理论知识,你可以深入学习相关的教材和论文。了自注意力机制的原理、计算方法以及Transformer的整体架构是非常重要的。此外,通过实践项目来应用Transformer也是非常有帮助的,比如构建一个机器翻译系统或者文本生成模型。 希望这样的释对你有帮助!如果还有其他问题,请随时提问。祝你在学习NLP的道路上取得进步!加油!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值