L1和L2正则化区别

本文介绍了L1(Lasso Regression)和L2(Ridge Regression)正则化的定义,异同点。L1正则化通过使部分特征系数归零进行特征选择,适合特征间有相关性的场景;而L2正则化保持所有特征系数非零,确保优化过程稳定快速,适用于特征间无关联的情况。此外,还提到了Elastic Net是L1和L2优点的结合。
摘要由CSDN通过智能技术生成

1. L1和L2的定义

L1正则化,又叫Lasso Regression

如下图所示,L1是向量各元素的绝对值之和



L2正则化,又叫Ridge R

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值