集合论第一章 5 偶集

5.1 偶集公理

现在看以下问题:

  1. 对于任意一个集合 a , a, a, 是否存在集合 A , A, A, 恰好以 a a a 为元素?
    就是说,是否存在集合 A , A, A, 使得:
    ∀ x ( x ∈ A    ⟺    x = a ) \forall x (x \in A \iff x = a) x(xAx=a)
  2. 对于任意两个集合 a , b , a, b, a,b, 是否存在集合 A , A, A, 恰好以 a a a b b b 为元素?
    就是说,是否存在集合 A , A, A, 使得:
    ∀ x ( x ∈ A    ⟺    x = a ∨ x = b ) \forall x (x \in A \iff x = a \lor x = b) x(xAx=ax=b)

前面设立的公理都不能保证这样的集合的存在,需要设立一条新的公理。为了简便,我们只设立一条公理,保证问题2中的集合的存在性,并可推出问题1中的集合的存在性:


公理四 偶集公理

对于任意两个集合 a , b , a, b, a,b, 存在一个集合 A , A, A, 恰好以 a a a b b b 为元素,即:
∀ x ( x ∈ A    ⟺    x = a ∨ x = b ) \forall x (x \in A \iff x = a \lor x = b) x(xAx=ax=b)


5.2 偶集的唯一性

偶集公理中的集合 A A A 是惟一的。
集合论条件的性质可得。

5.3 偶集的书写格式

对于任意的集合 a , b , a, b, a,b, 记:
{ a , b } = { x ∣ x = a ∨ x = b } \left \{ a, b \right \} = \left \{ x | x = a \lor x = b \right \} {a,b}={xx=ax=b}

推论

{ a , b } = { b , a } \left \{ a, b \right \} = \left \{ b, a \right \} {a,b}={b,a}

证明

x = a ∨ x = b    ⟺    x = b ∨ x = a x = a \lor x = b \iff x = b \lor x = a x=ax=bx=bx=a

在这个意义下,偶集又被称为无序偶。

5.4 单集的书写格式

在偶集定义中,并没有限定 a ≠ b a \neq b a̸=b 。以下是 a = b a = b a=b 的情况:
对于任意的集合 a , a, a, 记:
{ a } = { a , a } , \left \{ a \right \} = \left \{ a, a \right \}, {a}={a,a}, 并称之为以 a a a 为元素的单集。
显然,单集还可写成:
{ a } = { x ∣ x = a } \left \{ a \right \} = \left \{ x | x = a \right \} {a}={xx=a}
这就是说,单集 { a } \left \{ a \right \} {a} 是以 a a a 为唯一元素的集合。

在本节以前,对于具体的集合,我们只承认了空集的存在。在设立偶集公理以后,我们可以构造无数个另外的具体集合了。例如,可以构造单集:
{ ∅ } , { { ∅ } } , { { ∅ , { ∅ } } } , \left \{ \varnothing \right \}, \left \{ \left \{ \varnothing \right \} \right \},\left \{ \left \{ \varnothing, \left \{ \varnothing \right \} \right \} \right \}, {},{{}},{{,{}}}, 等。
可以构造偶集:
{ ∅ , { ∅ } } , { { ∅ } , { ∅ , { ∅ } } } , \left \{ \varnothing, \left \{ \varnothing \right \} \right \}, \left \{ \left \{ \varnothing \right \}, \left \{ \varnothing, \left \{ \varnothing \right \} \right \} \right \}, {,{}},{{},{,{}}}, 等。
最后,应注意区分集合 a a a 与单集 { a } , \left \{ a \right \}, {a}, 他们之间的关系是: a a a { a } \left \{ a \right \} {a} 的唯一元素。例如, ∅ \varnothing 是不含元素的集合。而 { ∅ } \left \{ \varnothing \right \} {} 是以 ∅ \varnothing 为唯一元素的集合。 { { ∅ } } \left \{ \left \{ \varnothing \right \} \right \} {{}} 是以 { ∅ } \left \{ \varnothing \right \} {} 为唯一元素的集合。

5.5 偶集的性质

{ a , b } = { c , d } \{a, b \} = \{ c, d \} {a,b}={c,d},则 a = c ∧ b = d a = c \land b = d a=cb=d a = d ∧ b = c a = d \land b = c a=db=c

证明

{ a , b } = { c , d } \{a, b \} = \{ c, d \} {a,b}={c,d}
∀ x , x = a ∨ x = b ⇔ x = c ∨ x = d \forall x, x = a \lor x = b \Leftrightarrow x = c \lor x = d x,x=ax=bx=cx=d
x = a x = a x=a , 则 a = a ∨ a = b ⇔ a = c ∨ a = d a = a \lor a = b \Leftrightarrow a = c \lor a = d a=aa=ba=ca=d
于是 (1) a = c ∨ a = d a = c \lor a = d \tag {1} a=ca=d(1)
同理可得,
(2) b = c ∨ b = d b = c \lor b = d \tag {2} b=cb=d(2)
(3) c = a ∨ c = b c = a \lor c = b \tag {3} c=ac=b(3)
(4) d = a ∨ d = b d = a \lor d = b \tag {4} d=ad=b(4)

  1. a = c a = c a=c,则
    1.1. 若 b = d b = d b=d,则 a = c ∧ b = d a = c \land b = d a=cb=d
    1.2 否则, b ≠ d b \neq d b̸=d,但是这是不可能的。假设 b ≠ d b \neq d b̸=d,则由 ( 2 ) (2) (2) b = c b = c b=c。由 ( 4 ) (4) (4) d = a d = a d=a。于是 b = d b = d b=d,与 b ≠ d b \neq d b̸=d 矛盾。
  2. 否则, a ≠ c a \neq c a̸=c。由 ( 1 ) (1) (1) a = d a = d a=d。由 ( 3 ) (3) (3) b = c b = c b=c。于是 a = d ∧ b = c a = d \land b = c a=db=c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值