%%%一个旅行商人要拜访全国31个省会城市,需要选择最短的路径%%%%
%% 蚁群算法解决TSP问题
clear;close;clc; %素质三连
m=50; %蚂蚁个数
Alpha=1; % Alpha 表征信息素重要程度的参数
Beta=5; % Beta 表征启发式因子重要程度的参数
Rho=0.1; % Rho 信息素蒸发系数
NC_max=200; %最大迭代次数
Q=100; %信息素增加强度系数
C=[1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;3238 1229;4196 1004;4312 790;4386 570;3007 1970;2562 1756;2788 1491;2381 1676;
1332 695;3715 1678;3918 2179;4061 2370;3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2367;3394 2643;3439 3201;2935 3240;3140 3550;
2545 2357;2778 2826;2370 2975];%%31个省会坐标
%% 主要符号说明
% C n个城市的坐标,n×2的矩阵
% NC_max 最大迭代次数
% m 蚂蚁个数
% Alpha 表征信息素重要程度的参数
% Beta 表征启发式因子重要程度的参数
% Rho 信息素蒸发系数
% Q 信息素增加强度系数
% R_best 各代最佳路线
% L_best 各代最佳路线的长度
%% 第一步:变量初始化
n=size(C,1); %n表示问题的规模(城市个数)
D=zeros(n,n); %D表示完全图的赋权邻接矩阵
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; %%两点间的距离
else
D(i,j)=eps; %i=j时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示
end
D(j,i)=D(i,j);%对称矩阵
end
end %任意两点距离矩阵
Eta=1./D; %Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n); %Tau为信息素矩阵【31*31】
Tabu=zeros(m,n); %存储并记录路径的生成【50*31】
NC=1; %迭代计数器,记录迭代次数
R_best=zeros(NC_max,n); %各代最佳路线
L_best=inf.*ones(NC_max,1); %各代最佳路线的长度 inf无穷大
L_ave=zeros(NC_max,1); %各代路线的平均长度
while NC<=NC_max %停止条件之一:达到最大迭代次数,停止
%% 第二步:将m只蚂蚁放到n个城市上
Randpos=[]; %随即存取
for i=1:(ceil(m/n)) %取整函数
Randpos=[Randpos,randperm(n)];%随机打乱一个数字序列。其内的参数决定了随机数的范围。
end %产生62个随机城市ID
Tabu(:,1)=(Randpos(1,1:m))'; %选取其中50个作为蚁群起始点
%% 第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
for j=2:n %所在城市不计算
for i=1:m
visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问
J=zeros(1,(n-j+1)); %待访问的城市
P=J; %待访问城市的选择概率分布
Jc=1;
for k=1:n
if isempty(find(visited==k, 1)) %开始时置0
J(Jc)=k;
Jc=Jc+1;%访问的城市个数自加1
end
end
%下面计算待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P)); %按概率原则选取下一个城市
Pcum=cumsum(P); %cumsum,元素累加即求和
Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
%% 第四步:记录本次迭代最佳路线
L=zeros(m,1); %开始距离为0,m*1的列向量
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1)); %原距离加上第j个城市到第j+1个城市的距
end
L(i)=L(i)+D(R(1),R(n)); %一轮下来后走过的距离
end
L_best(NC)=min(L); %最佳距离取最小
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线
L_ave(NC)=mean(L); %此轮迭代后的平均距离
NC=NC+1; %迭代继续
%% 第五步:更新信息素
Delta_Tau=zeros(n,n); %开始时信息素为n*n的0矩阵
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);%此次循环在路径(i,j)上的信息素增量
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i); %此次循环在整个路径上的信息素增量
end
Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素
%% 第六步:禁忌表清零
Tabu=zeros(m,n); %直到最大迭代次数
end %结束while循环
%% 第七步:输出结果
Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)
Shortest_Route=R_best(Pos(1),:); %最大迭代次数后最佳路径
Shortest_Length=L_best(Pos(1)) ; %最大迭代次数后最短距离
figure(1)
plot(L_best)
xlabel('迭代次数')
ylabel('目标函数值')
title('适应度进化曲线')
%% 画路线图
figure(2)
subplot(1,2,1)%绘制第一个子图形
N=length(R);
scatter(C(:,1),C(:,2));%城市散点图
hold on
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],'g')
hold on
for ii=2:N
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],'g')
hold on
end
title('旅行商问题优化结果 ')
hold off
subplot(1,2,2) %绘制第二个子图形
plot(L_best) %保持图形
hold on
plot(L_ave,'r')
title('平均距离和最短距离') %标题