leetcode 爬楼梯

题目描述:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1.  1 阶 + 1 阶 + 1 阶
2.  1 阶 + 2 阶
3.  2 阶 + 1 阶

解题思路:

 假设 f(n) 是上到第i个台阶的走法种数,所以有:

f(0) = 1;

f(1) = 1;

f(2) = 2; 上到第2个台阶:(1,1), (2) 

f(3) = 3; 上到第3个台阶:(1,1,1),(1,2), (2,1)

f(4) = ?如果第4个台阶是最后的台阶,那么上到最后一步只有两种方式:走1个,或者走2个台阶。如果走2个,那上次走到的是第2个台阶(n-2),考虑上到第2个台阶有f(2) = 2种方式;如果走1个,那上次走到的是第3个台阶,而上到第3个台阶有f(3) = 3种方式;所以 f(4) = f(2) + f(3),依次类推,即 f(n) = f(n-2) + f(n-1)。

C++代码:

递归解法:

class Solution {
public:
    int climbStairs(int n) { 
        if (n == 0 || n == 1)
            return 1;
        else
            return climbStairs(n-1) + climbStairs(n-2);
    }
};

动态规划解法:

使用数组解法,我们需要创建一个大小为n+1的数组。如果说递归解法是自顶向下的话,数组实现动态规划即是自底向上。在这个算法中,和递归解法类似,只是将f(n)=f(n-1)+f(n-2)换成 result[n] = result[n-1]+result[n-2]即可。

class Solution {
public:
    int climbStairs(int n) { 
        vector<int> result(n+1);
        
        result[0] = 1; // 上到第0个台阶的方式
        result[1] = 1; // 上到第1个台阶的方式
        
        for (int i = 2; i < n+1; i++){
            result[i] = result[i-1] + result[i-2]; // 上到第i个台阶的方式
        }
        
        return result[n];
        
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Q

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值