补码的优点及补码公式

提起补码,就不得不提另外两个难缠的家伙:原码、反码。

计算机中,表示有符号的整数一共就用到这3种码,它们之间是有一定依存关系的。

一、补码的地位

它们的共同点是都有符号位和数值位,最高位为符号位,其他位为数值位。符号位用0表示“正”,1表示“负”。区别仅在于数值位不同。

实际上,原码反码只是半成品,计算机中真正用的是补码。

单从名字就可以看出来,原码,就像原始人一样,是最初的还没开始进化的物种,只适用于考古。

反码,一身反骨,听起来就像反人类一样,不堪大用。

只有补码,像windows补丁,修修补补后,才好使用。

二、补码的规则

既然只用补码,为什么要整出这么多码呢?因为水是有源滴,树是有根滴,叫补码是有原因滴。

详细原因参见《负数在计算机内的编码》一文

负数在计算机内的编码文章浏览阅读1k次,点赞26次,收藏17次。我们知道,n位二进制数能表示的数的个数肯定是偶数个(2的n次方),既然只有一个0,那正数和负数的个数肯定是不相等的(个数和为2^n-1)。比如8位二进制数能表示的数有256个,除去一个0,还剩255个。正0的补码是原码本身(没有加1),负0的补码是原码的反码加1(有加1),所以二者之和不可能是0,即00000000+10000000不等于0,所以补码10000000肯定不再表示0。所以,10000001-1=10000000,这个结果正是前面讨论的-0的补码,它应该表示-128,这个数就是最小的负数。_计算逻辑编辑负数代码是什么https://blog.csdn.net/jjmhx/article/details/138579915?fromshare=blogdetail&sharetype=blogdetail&sharerId=138579915&sharerefer=PC&sharesource=jjmhx&sharefrom=from_link

可以说,原码、反码就是补码的爹妈。

它们之间的繁衍链条是这样的:

遗传性:正数和0体现三码的遗传特征,其原码、补码、反码都是它本身。

变异性:正数的符号位由0改为1就变成负数的原码。负数的反码为其原码取反(除符号位),补码为反码加一。

例如,9的原码、反码、补码都是0000 1001。(这里用最简单的8位2进制来表示);-9的原码为1000 1001(符号位由0变1)、反码为1111 0110、补码为1111 0111。

三、补码的优点

使用补码就是吃十全大补丸,好处多多。

(1)不用区分符号位和数值位。

在计算时,可以将符号位和数值域统一处理,不做区分,这样便可大大简化电路系统。

(2)一种算法搞定两种计算。

使用补码,可用加法实现减法。比如前面说的9的补码是0000 1001,-9的补码是1111 0111,9-9 = 0000 1001 + 1111 0111=0。

这样,计算机只需要一个叫做“加法器”的部件,就能完成加减法的计算。

这是因补码有一个非常重要的性质:对于一个数A,它的补码就是能够使得A和它的补码相加得到0的那个数。换句话说,如果一个数A的补码是B,那么A + B = 0。

四、补码公式

1.补码转原码

正数和0没什么可说的,三码都是一样,还转个毛线!这里只讨论负数的转码。

将一个负数的补码转为原码,其实就是对该补码再求补码:

比如补码为1111 1001:

①求反码:符号位“1”不变,其它位求反,故反码为:1000 0110

②求补码:反码加1,即1000 0110 + 1 = 10000111,这就是-7的原码。

2.求负数的补码

求一个十进制负数X的补码有一个公式:X补码 = 2^N + X(X<0)。

公式中的N表示位宽,即N位二进制数。

因为现在的int型基本都是用4个字节(32位二进制数)表示的,X的补码是2^32+X,所以-1的补码为2^32-1=4294967295。如果是8位二进制数,其补码就是2^8+X。

3.求负数的补码的绝对值

要求一个负二进制数的补码的绝对值,其实就是求它的相反数,只要对补码全部取反并加1,就可得到其绝对值。

比如-65的补码是1011 1111,各位取反:0100 0000,加1得:01000001(+65)

<think>好的,我现在需要帮助用户了解C语言中的补码概念和计算方法。首先,我需要回忆一下补码的基本知识,以及它在C语言中的应用。 用户提到了几个引用,我需要仔细看看这些引用内容,确保回答准确。引用[1]提到补码计算的麻烦和容易出错,以及四种计算方法。引用[2]讨论了补码的原理,包括原码反码补码的转换。引用[3]解释了补码在计算机中的用途,特别是将减法转为加法。引用[4]和[5]给出了具体的代码示例和补码转绝对值的方法。 首先,我应该从基本概念入手,解释原码反码补码之间的关系。然后说明为什么补码被使用,比如统一加减法,解决零的表示问题。接下来,详细说明补码的计算方法,包括正数和负数的处理。可能需要分步骤,例如如何将负数转换为补码,或者如何从补码还原原数。 另外,用户提到C语言中的补码应用,可能需要涉及类型转换、溢出处理以及位运算的例子。例如,引用[4]中的代码示例,char a = 258; 这里可能涉及溢出,因为char通常是8位,258超出了范围,所以结果会是2(258-256)。这个例子可以说明补码在实际编程中的影响。 还要注意引用[5]中的补码求绝对值的方法,即取反加1。这可能是一个重要的步骤,需要详细解释。 在整理过程中,需要确保LaTeX格式正确,比如变量和公式使用$...$,独立公式用$$...$$。例如,负数的补码转换可以写成$-5$的原码反码补码步骤。 此外,用户要求生成相关问题,我需要考虑补码的应用场景、转换方法、与其他编码的区别,以及在C语言中的具体表现,比如位运算或溢出问题。 最后,检查是否有遗漏的点,比如补码优点,或者常见错误,帮助用户全面理解。同时,确保引用标记正确,每个引用的内容对应正确的来源。</think>### C语言中的补码计算与表示方法 #### 一、补码的基本概念 补码是计算机中表示有符号整数的编码方式,**核心作用是统一加减法运算**。其定义如下: 1. **正数的补码**:与原码相同,例如 $+5$ 的8位补码为 $00000101$。 2. **负数的补码**:原码符号位不变,数值位取反后加1。例如 $-5$ 的补码计算步骤: - 原码:$10000101$ - 反码:$11111010$ - 补码:$11111011$ [^1][^2] #### 二、补码的物理意义与优点 1. **消除减法运算**:计算机只需加法器即可完成加减法,例如 $5 - 3$ 可转换为 $5 + (-3)$ 的补码运算[^3]。 2. **零的唯一性**:补码中 $0$ 的表示为 $00000000$,避免了原码中 $+0$ 和 $-0$ 的歧义[^2]。 3. **溢出特性**:补码运算溢出时结果仍然有效,例如8位补码中 $127 + 1 = -128$(符号位参与运算)。 #### 三、C语言中的补码应用 1. **类型转换**: ```c char a = 258; // 258的二进制为100000010,截断为8位后变为00000010(即2) printf("%d", a); // 输出2 [^4] ``` 2. **补码与绝对值的转换**: - 已知补码求绝对值:取反后加1,例如补码 $11110001$(对应十进制-15)→ $00001110 + 1 = 00001111$(即15)[^5]。 #### 四、常见计算场景 | 操作类型 | 示例(8位补码) | 结果补码 | 十进制值 | |----------|-----------------------|------------|----------| | 加法 | $00101010 + 11111011$ | $00100101$ | 37 | | 减法 | $01100100 - 00001111$ | $01010101$ | 85 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金创想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值