对极值和凹凸性的理解

f(x)f(x)f(x)的和极值有关的知识有:(1),若f(x)f(x)f(x)为可导函数,则满足f(x)′f(x)'f(x)=0的点x0x_0x0可能为极值点,也可能不是极值点。
即对函数f(x)=x3f(x)=x^3f(x)=x3f(x)=x2f(x)=x^2f(x)=x2
(2),若f(x)f(x)f(x)上存在不可导的点(通常这种点是少数的),通常用极值的定义去判断
举例,f(x)=∣x∣f(x)=|x|f(x)=xf(x)={2x−1x&lt;0x−1⩾0f(x)=\begin{cases} 2x-1 &amp; x&lt;0\\x-1 &amp; \geqslant 0\end{cases}f(x)={2x1x1x<00
判断函数极值的方法,就是依照上面说的原则
另外:求出函数的满足f(x)′=0点x0f(x)&#x27;=0点x_0f(x)=0x0,存在判断极值点的第二充分条件。
f(x0)′′&gt;0f(x_0)&#x27;&#x27;&gt;0f(x0)>0,则为极小值点
f(x0)′′&lt;0f(x_0)&#x27;&#x27;&lt;0f(x0)<0,则为极大值点
判断曲线的凹凸性的方法(推导使用的是泰勒展开),即把f(x1)和f(x2)在x1+x22f(x_1)和f(x_2)在\frac{x_1+x_2}{2}f(x1)f(x2)2x1+x2处展开
从而有若f(x)′′&gt;0f(x)&#x27;&#x27;&gt;0f(x)>0,为凹曲线
f(x)′′&lt;0f(x)&#x27;&#x27;&lt;0f(x)<0,为凸曲线
从函数的凹凸性去记忆极值点的第二充分条件
若一个函数存着f(x0)′=0,且f(x0)′′&gt;0f(x_0)&#x27;=0,且f(x_0)&#x27;&#x27;&gt;0f(x0)=0,f(x0)>0,如何去判断这为极大值点,还是极小值点呢?可以从函数的凹凸性去判断,因为用老师说的巧记法,很好的判断一条曲线是凹曲线还是凸曲线。
x0x_0x0必定属于x0x_0x0的一个邻域内,若能判断f(x)′′f(x)&#x27;&#x27;f(x)在该邻域内的正负号,可以有如下的想法
f(x)′′&gt;0,f(x)&#x27;&#x27;&gt;0,f(x)>0,则函数应为凹曲线,(同时还说了x0x_0x0为极值点),则就应为极小值点。若f(x)′′&lt;0f(x)&#x27;&#x27;&lt;0f(x)<0,则为凸曲线,则x0x_0x0点为极大值点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值