对
f
(
x
)
f(x)
f(x)的和极值有关的知识有:(1),若
f
(
x
)
f(x)
f(x)为可导函数,则满足
f
(
x
)
′
f(x)'
f(x)′=0的点
x
0
x_0
x0可能为极值点,也可能不是极值点。
即对函数
f
(
x
)
=
x
3
f(x)=x^3
f(x)=x3和
f
(
x
)
=
x
2
f(x)=x^2
f(x)=x2
(2),若
f
(
x
)
f(x)
f(x)上存在不可导的点(通常这种点是少数的),通常用极值的定义去判断
举例,
f
(
x
)
=
∣
x
∣
f(x)=|x|
f(x)=∣x∣和
f
(
x
)
=
{
2
x
−
1
x
<
0
x
−
1
⩾
0
f(x)=\begin{cases} 2x-1 & x<0\\x-1 & \geqslant 0\end{cases}
f(x)={2x−1x−1x<0⩾0
判断函数极值的方法,就是依照上面说的原则
另外:求出函数的满足
f
(
x
)
′
=
0
点
x
0
f(x)'=0点x_0
f(x)′=0点x0,存在判断极值点的第二充分条件。
若
f
(
x
0
)
′
′
>
0
f(x_0)''>0
f(x0)′′>0,则为极小值点
若
f
(
x
0
)
′
′
<
0
f(x_0)''<0
f(x0)′′<0,则为极大值点
判断曲线的凹凸性的方法(推导使用的是泰勒展开),即把
f
(
x
1
)
和
f
(
x
2
)
在
x
1
+
x
2
2
f(x_1)和f(x_2)在\frac{x_1+x_2}{2}
f(x1)和f(x2)在2x1+x2处展开
从而有若
f
(
x
)
′
′
>
0
f(x)''>0
f(x)′′>0,为凹曲线
若
f
(
x
)
′
′
<
0
f(x)''<0
f(x)′′<0,为凸曲线
从函数的凹凸性去记忆极值点的第二充分条件
若一个函数存着
f
(
x
0
)
′
=
0
,
且
f
(
x
0
)
′
′
>
0
f(x_0)'=0,且f(x_0)''>0
f(x0)′=0,且f(x0)′′>0,如何去判断这为极大值点,还是极小值点呢?可以从函数的凹凸性去判断,因为用老师说的巧记法,很好的判断一条曲线是凹曲线还是凸曲线。
x
0
x_0
x0必定属于
x
0
x_0
x0的一个邻域内,若能判断
f
(
x
)
′
′
f(x)''
f(x)′′在该邻域内的正负号,可以有如下的想法
若
f
(
x
)
′
′
>
0
,
f(x)''>0,
f(x)′′>0,则函数应为凹曲线,(同时还说了
x
0
x_0
x0为极值点),则就应为极小值点。若
f
(
x
)
′
′
<
0
f(x)''<0
f(x)′′<0,则为凸曲线,则
x
0
x_0
x0点为极大值点。
对极值和凹凸性的理解
最新推荐文章于 2023-11-25 23:00:46 发布