对极值和凹凸性的理解

f ( x ) f(x) f(x)的和极值有关的知识有:(1),若 f ( x ) f(x) f(x)为可导函数,则满足 f ( x ) ′ f(x)' f(x)=0的点 x 0 x_0 x0可能为极值点,也可能不是极值点。
即对函数 f ( x ) = x 3 f(x)=x^3 f(x)=x3 f ( x ) = x 2 f(x)=x^2 f(x)=x2
(2),若 f ( x ) f(x) f(x)上存在不可导的点(通常这种点是少数的),通常用极值的定义去判断
举例, f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x f ( x ) = { 2 x − 1 x &lt; 0 x − 1 ⩾ 0 f(x)=\begin{cases} 2x-1 &amp; x&lt;0\\x-1 &amp; \geqslant 0\end{cases} f(x)={2x1x1x<00
判断函数极值的方法,就是依照上面说的原则
另外:求出函数的满足 f ( x ) ′ = 0 点 x 0 f(x)&#x27;=0点x_0 f(x)=0x0,存在判断极值点的第二充分条件。
f ( x 0 ) ′ ′ &gt; 0 f(x_0)&#x27;&#x27;&gt;0 f(x0)>0,则为极小值点
f ( x 0 ) ′ ′ &lt; 0 f(x_0)&#x27;&#x27;&lt;0 f(x0)<0,则为极大值点
判断曲线的凹凸性的方法(推导使用的是泰勒展开),即把 f ( x 1 ) 和 f ( x 2 ) 在 x 1 + x 2 2 f(x_1)和f(x_2)在\frac{x_1+x_2}{2} f(x1)f(x2)2x1+x2处展开
从而有若 f ( x ) ′ ′ &gt; 0 f(x)&#x27;&#x27;&gt;0 f(x)>0,为凹曲线
f ( x ) ′ ′ &lt; 0 f(x)&#x27;&#x27;&lt;0 f(x)<0,为凸曲线
从函数的凹凸性去记忆极值点的第二充分条件
若一个函数存着 f ( x 0 ) ′ = 0 , 且 f ( x 0 ) ′ ′ &gt; 0 f(x_0)&#x27;=0,且f(x_0)&#x27;&#x27;&gt;0 f(x0)=0,f(x0)>0,如何去判断这为极大值点,还是极小值点呢?可以从函数的凹凸性去判断,因为用老师说的巧记法,很好的判断一条曲线是凹曲线还是凸曲线。
x 0 x_0 x0必定属于 x 0 x_0 x0的一个邻域内,若能判断 f ( x ) ′ ′ f(x)&#x27;&#x27; f(x)在该邻域内的正负号,可以有如下的想法
f ( x ) ′ ′ &gt; 0 , f(x)&#x27;&#x27;&gt;0, f(x)>0,则函数应为凹曲线,(同时还说了 x 0 x_0 x0为极值点),则就应为极小值点。若 f ( x ) ′ ′ &lt; 0 f(x)&#x27;&#x27;&lt;0 f(x)<0,则为凸曲线,则 x 0 x_0 x0点为极大值点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值