f(x)对g(x)求导的理解

本文探讨了f(x)对g(x)求导的概念,包括当g(x)=x时的情况以及通过导数定义和复合函数两种方法进行求导的详细步骤。举例说明了如何对f(x)=sinx在2x趋近于0时求导,并将其转换为复合函数φ(t)的形式,最终得出f(x)对2x求导的结果为21cos21*2x。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

f ( x ) 对 g ( x ) f(x)对g(x) f(x)g(x)求导的理解

1.若 g ( x ) = x , 则 f ( x ) 对 g ( x ) g(x)=x,则f(x)对g(x) g(x)=x,f(x)g(x)求导就是一般的 f ( x ) 对 x f(x)对x f(x)x求导。
2.若 g ( x ) g(x) g(x)为其它的函数,应该怎么做呢?
(1)可以从导数定义去看。
例如:求 f ( x ) = s i n x 在 2 x 趋 近 于 0 f(x)=sinx在2x趋近于0 f(x)=sinx2x0时的导数
lim ⁡ 2 x → 0 s i n x − s i n 0 2 x − 0 = lim ⁡ 2 x → 0 s i n 1 2 ∗ 2 x 2 x = lim ⁡ 2 x → 0 1 2 ∗ 2 x 2 x = 1 2 \lim_{2x\rightarrow 0}\frac{sinx-sin0}{2x-0}=\lim_{2x\rightarrow 0}\frac{sin\frac{1}{2}*2x}{2x}=\lim_{2x\rightarrow 0}\frac{\frac{1}{2}*2x}{2x}=\frac{1}{2}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值