医学分割论文:nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation

医学分割论文:nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation

Auther: Fabian Isensee, Institution:German Cancer Research Center, Publish year: 2018
论文地址:https://arxiv.org/abs/1809.10486

https://github.com/MIC-DKFZ/nnUNet

目前存在的问题:

  • UNet在图像分割领域具有广泛应用,然而在将UNet框架应用于新的分割问题是,需要考虑网络结构,预处理,训练和预测等多个方面的问题。因此需要花费大量的时间用于数据预处理和调优。

作者提出的方案:

  • 作者提出了一个可适用于多种数据,并可以自我调优的网络结构:nnUNet(no-new UNet),仅使用最典型的二维和三维UNet网络,在不使用手动优化的情况下,在多个数据集中获得了最高平均得分
  • 没有添加最近的UNet改进:residual connection,dense connection,attention module
  • 关注了除网络结构之外的其他方面的优化-> 图像预处理(重采样和归一化),训练(loss,优化器选择,数据增强),预测(patch-based,TTA和模型集成),后处理

研究方法:

  1. 网络结构:2D 和 3D UNet以及多尺度UNet。网络中的小改动:使用 leaky ReLUs 代替ReLU作为卷积中的激活函数,并使用instance normalization代替batch normalization
  2. 2D UNet: 虽然医学分割数据集均为3D数据集,但是在数据集存在空间各向异性的情况下,3D网络存在性能下降的问题
  3. 3D UNet:天然适合3D数据集,但是对GPU显存消耗巨大
  4. 级联UNet:低分辨率后接高分辨率UNet

预处理:

  1. 裁剪:去掉0区域
  2. 重采样:统一pixel spacing
  3. 正则化:对于CT,将数据集中所有CT值的[0.5, 99.5]进行标准化,根据平均值和标准差进行z评分标准化;对于MR,对每个病人数据进行z评分标准化

训练:

  1. 所有训练均使用5折交叉验证
  2. 使用dice和交叉熵作为损失函数
  3. 使用Adam优化器,初始学习率为3e-4,每个epoch设为250个train batches。在训练中计算验证集和训练集的loss的滑动平均值,当30个epoch训练集loss(acc)提升小于5e-3时,将学习率调小,学习率最小为1e-6
  4. 数据增强:随机旋转,随机缩放,随机弹性变形,伽马校正增强和镜像
  5. patch sampling:为了提高网络训练的稳定性,在batch中超过三分之一的样本包含至少一个随机选择的前景类

预测:

  1. 基于patch训练,同样基于patch预测,对于不同patch重叠部分,中心pixel的权重高于边缘部分
  2. 在预测时使用数据增强,使用5折训练的5个模型的进行预测
  3. 将多个模型进行集成

后处理:

  1. 对训练数据进行了ground truth的连通分量分析。如果一个类在所有情况下都位于一个连接的组件中,那么这个行为就被定义为数据集的一个通用属性。因此,在相应数据集的预测图像上,除了最大的连接组件外,该类的所有连接组件都会自动删除
  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值