深度学习: mAP (Mean Average Precision)

版权声明:转载请注明出处 https://blog.csdn.net/JNingWei/article/details/78955536

mAP 概念

P

precision,即 准确率

R

recall,即 召回率

PR曲线

即 以 precisionrecall 作为 纵、横轴坐标 的二维曲线。

一般来说,precisionrecall鱼与熊掌 的关系。下图即是 PR曲线
这里写图片描述

AP值

Average Precision,即 平均精确度

如何衡量一个模型的性能,单纯用 precision 和 recall 都不科学。于是人们想到,哎嘛为何不把 PR曲线下的面积 当做衡量尺度呢?于是就有了 AP值 这一概念。这里的 average,等于是对 precision 进行 取平均

mAP值

Mean Average Precision,即 平均AP值

是对多个验证集个体 求 平均AP值 。如下图:
这里写图片描述

mAP 计算

公式

这里写图片描述

Code

def compute_ap(gt_boxes, gt_class_ids,
               pred_boxes, pred_class_ids, pred_scores,
               iou_threshold=0.5):
    """Compute Average Precision at a set IoU threshold (default 0.5).

    Returns:
    mAP: Mean Average Precision
    precisions: List of precisions at different class score thresholds.
    recalls: List of recall values at different class score thresholds.
    overlaps: [pred_boxes, gt_boxes] IoU overlaps.
    """
    # Trim zero padding and sort predictions by score from high to low
    gt_boxes = trim_zeros(gt_boxes)
    pred_boxes = trim_zeros(pred_boxes)
    pred_scores = pred_scores[:pred_boxes.shape[0]]
    indices = np.argsort(pred_scores)[::-1]
    pred_boxes = pred_boxes[indices]
    pred_class_ids = pred_class_ids[indices]
    pred_scores = pred_scores[indices]

    # Compute IoU overlaps [pred_boxes, gt_boxes]
    overlaps = compute_overlaps(pred_boxes, gt_boxes)

    # Loop through ground truth boxes and find matching predictions
    match_count = 0
    pred_match = np.zeros([pred_boxes.shape[0]])
    gt_match = np.zeros([gt_boxes.shape[0]])
    for i in range(len(pred_boxes)):
        # Find best matching ground truth box
        sorted_ixs = np.argsort(overlaps[i])[::-1]
        for j in sorted_ixs:
            # If ground truth box is already matched, go to next one
            if gt_match[j] == 1:
                continue
            # If we reach IoU smaller than the threshold, end the loop
            iou = overlaps[i, j]
            if iou < iou_threshold:
                break
            # Do we have a match?
            if pred_class_ids[i] == gt_class_ids[j]:
                match_count += 1
                gt_match[j] = 1
                pred_match[i] = 1
                break

    # Compute precision and recall at each prediction box step
    precisions = np.cumsum(pred_match) / (np.arange(len(pred_match)) + 1)
    recalls = np.cumsum(pred_match).astype(np.float32) / len(gt_match)

    # Pad with start and end values to simplify the math
    precisions = np.concatenate([[0], precisions, [0]])
    recalls = np.concatenate([[0], recalls, [1]])

    # Ensure precision values decrease but don't increase. This way, the
    # precision value at each recall threshold is the maximum it can be
    # for all following recall thresholds, as specified by the VOC paper.
    for i in range(len(precisions) - 2, -1, -1):
        precisions[i] = np.maximum(precisions[i], precisions[i + 1])

    # Compute mean AP over recall range
    indices = np.where(recalls[:-1] != recalls[1:])[0] + 1
    mAP = np.sum((recalls[indices] - recalls[indices - 1]) *
                 precisions[indices])

    return mAP, precisions, recalls, overlaps

没有更多推荐了,返回首页