什么是mAP(mean average Precision)

mAP(MeanAveragePrecision)是评估物体检测算法性能的关键指标。它涉及计算每个类别的平均精确率(AP),AP是Precision-Recall曲线下的面积。通过对多个验证集样本的平均AP值求和,然后除以类别数量得到mAP。计算过程中,考虑了IoU(交并比)大于等于0.5时的检测作为有效检测,并按置信度降序排列结果。最后,通过绘制并分析PR曲线来确定AP值,从而得出mAP值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mean Average Precision,即 平均AP值 。AP(Average precision)单类标签平均(各个召回率中最大精确率的平均数)的精确率。AP: PR( Precision-Recall)曲线下面积,mAP(Mean Average Precision)所有类标签的平均精确率。

是对多个验证集个体 求 平均AP值 。如下图:

这里写图片描述

mAP 计算

对于以下三张猫的图片,分别对每张图片进行统计,并存入一个表格中,这个表格是按照置信度降序排序的:

在这里插入图片描述

 此时真实框有两个,所有num_ob=2(num_ob是累加起来的),当IoU大于等于0.5时,认为检测到了目标。
在这里插入图片描述


此时num_ob=3,这张图片只有一个真实框,所以num_ob+=1, 

 

 

 


最后得到左边的一张表格,先从第一个元素开始计算Precision和Recall,一次累加一个元素,直到表格中所以元素计算完成为止。

 

此时我们会得到右边的一张表格,按照这个表格,我们就可以绘制P-R曲线了,在绘制前需要删除一些Recall重复的数据,如图中的第五和第六个数据。


AP = (当前点的Recall值 - 上一个点的Recall值)x 当前点以及后面所有Precision值最大的点


上面的0.6694就是猫所对应的AP值,采用这个方法,我们可以计算出所有类别所对应的AP值,再除以类别的个数,就得到了map。

 

 

 

### Mean Average Precision (mAP) 的定义 Mean Average Precision (mAP) 是一种广泛用于评估信息检索系统和目标检测模型性能的度量标准。该指标综合考虑了查准率(Precision) 和查全率(Recall),能够更全面地反映系统的整体表现。 在信息检索领域,mAP 表示的是所有查询平均精度的均值[^3]。对于每一个单独的查询请求而言,先计算其对应的 AP 值(Average Precision),再取这些 AP 值的算术平均即得到最终的 mAP 结果。 而在对象检测任务中,mAP 则衡量不同类别上预测框与真实标注框之间的匹配程度。具体来说,针对每一类物体分别统计 TP(True Positive), FP(False Positive) 及 FN(False Negative)[^1]。 ### 计算方法 #### 对于信息检索: 1. 针对单个查询 q,按照文档的相关性得分排序; 2. 根据实际相关情况标记每个返回项是否为正样本; 3. 使用下列公式逐个位置 i 更新当前累计 P@i(Precision at position i),其中 rel(i)=1 若第 i 位是相关项目,否则为0;nrel(q)表示查询q下的总相关数: \[ \text{P}(i|q) = \frac{\sum_{j=1}^{i}\mathrm{rel(j)}}{i},\quad \forall i : \mathrm{rel}(i)=1 \] 4. 将上述过程中获得的所有非零 P@i 平均化作为此查询 Q 下的 AP 值; 5. 最终通过求解所有测试集中各查询下 AP 的简单平均值得到整个数据集上的 mAP。 #### 对象检测中的实现方式略有差异: - 主要区别在于如何判断两个边界框之间是否存在重叠以及设定 IoU(Intersection over Union)阈值来决定真阳性和假阳性。 - 当前普遍采用 COCO 数据集所使用的评价方案,在多个不同的 IoU 阈值水平上来累积 PR 曲线并据此得出每种类别的 AP 后再次做平均形成全局 mAP 指标。 ```python def calculate_map(precisions, recalls): """ Calculate mean average precision given lists of precisions and recalls. Args: precisions (list): List containing precision values. recalls (list): List containing recall values. Returns: float: Calculated MAP value. """ aps = [] unique_recalls = sorted(set(recalls)) for r in unique_recalls: p_interpolated = max([p for p, rec in zip(precisions, recalls) if rec >= r], default=0) aps.append(p_interpolated) return sum(aps)/len(unique_recalls) if len(unique_recalls)>0 else 0 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

稻壳特筑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值