import torch
# 数据
x = torch.randn([1,3,4,4])
print(x.shape)
# nn.AdaptiveAvgPool2d结果
gap = nn.AdaptiveAvgPool2d(1)
print(gap(x))
# nn.AvgPool2d结果,参考resnest代码
gap2 = nn.AvgPool2d(kernel_size=(x.size(2),x.size(3)))
#ceil_mode=False)
print(gap2(x))
nn.AvgPool2d实现nn.AdaptiveAvgPool2d
最新推荐文章于 2024-09-28 10:39:10 发布
本文介绍了如何在PyTorch中使用AdaptiveAvgPool2d进行自适应平均池化,与传统的 AvgPool2d 操作进行对比,并通过实例展示了它们在处理图像尺寸变化时的效果。重点在于理解这两种池化层在卷积神经网络中的应用和差异。
摘要由CSDN通过智能技术生成