讲讲什么是Q检验

总第237篇/张俊红

之前我们讲过T检验、F检验,这一篇,我们讲讲Q检验。Q检验又称舍弃商法,主要是用来对可疑值(异常值)进行取舍判断的。

比如现在做了若干次实验,然后得到了若干个观测值:10.14、10.12、10.25、10.16、10.20这几个值,通过观测值看到10.25与其他值之间相差比较大,现在考虑要不要将这个值当做异常值去掉呢?有没有什么判断依据,这个时候就可以用Q检验。

主要有如下几个步骤:

step1:将所有观测数据按照从小到大的顺序进行排列
step2:求最大值与最小值之间的差值,称为极差
step3:计算想删除值与其相邻值之间差值的绝对值
step4:用step3算出来的值除step2算出的值,该值就是q统计量
step5:根据观测值个数以及置信水平,查q值表

q值表链接:https://www.docin.com/p-1104789399.html

step6:比较q统计量与q值表中查出的结果,如果q统计量小于q值表查出来的结果,则不应该删除,否则就可以删除

Q检验的核心思想其实和t检验的核心思想是一致的,都是用来检验不同的观测值之间是否有显著差异,即是否来自于同一总体,如果差异不显著,则说明是来自于同一总体,否则就不是。

Q检验除了被用在要不要剔除异常值以外,还主要用在多重比较中,比如有多个组别,需要判断各个组别两两之间的差异程度时也会用到。我们之前介绍的LSD就是多重比较法中最简单的一种。还有时间序列的白噪声检验等等。

素数的原根是一个重要的数论概念,以下是其定义及相关信息: 一个整数 $ g $ 是模 $ p $ 的原根(其中 $ p $ 为素数),当且仅当满足以下条件: - $ g^k \mod p $ (对于 $ k = 1, 2, ..., p-1 $)的结果能够遍历从 1 到 $ p-1 $ 的所有整数。 换句话说,$ g $ 的幂次在模 $ p $ 下生成了乘法群 $(\mathbb{Z}/p\mathbb{Z})^\times$ 的所有元素。 更形式化地讲,若 $ g $ 是模 $ p $ 的原根,则它必须满足: $$ g^{p-1} \equiv 1 \ (\text{mod}\ p) $$ 并且不存在小于 $ p-1 $ 的正整数 $ d $ 使得 $ g^d \equiv 1 \ (\text{mod}\ p) $ 成立。 例如,考虑素数 $ p=7 $。可以验证 $ g=3 $ 是它的原根,因为: ```plaintext g^1 mod 7 = 3 g^2 mod 7 = 2 g^3 mod 7 = 6 g^4 mod 7 = 4 g^5 mod 7 = 5 g^6 mod 7 = 1 ``` 可以看到结果覆盖了集合 {1, 2, 3, 4, 5, 6}。 寻找原根的方法通常涉及分解 $ p-1 $ 并测试候选值是否符合上述性质。此外,并非所有的素数都有相同的数量的原根;实际上,一个素数 $ p $ 具有的原根总数等于欧拉函数 $\phi(p-1)$ 的值。 为了进一步理解这一概念,可以通过编程实现来检查某个数是否为特定素数的原根。下面提供了一个简单的 Python 示例程序用于判断给定数值是否为指定素数的原根: ```python def is_primitive_root(g, p): if gcd(g, p) != 1: return False phi_p = p - 1 factors = set() # Factorize phi_p into prime components. temp_phi = phi_p for i in range(2, int(sqrt(phi_p)) + 1): while (temp_phi % i == 0): factors.add(i) temp_phi //= i if temp_phi > 1: factors.add(temp_phi) for factor in factors: if pow(g, phi_p // factor, p) == 1: return False return True ``` 此段代码实现了检测过程的关键逻辑,即确保没有比完整周期短的小周期存在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俊红的数据分析之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值