Medical Transformer: Gated Axial-Attention for Medical Image Segmentation

                             Medical Transformer: Gated Axial-Attention for Medical Image Segmentation

 

现有的技术背景及其局限:

  1. 深度卷积体系结构缺乏对图像中的远程依赖关系的把握。
  2. 用于医学成像的数据样本数量相对较少,使得有效训练用于医学得transformer变得困难。

探索解决方案:

  1. 基于 Transformer 的体系结构利用自我注意机制,编码长期依赖关系,并具有极富表现力的表示法.
  2. 我们提出了一种门控轴向注意模型,通过在自我注意模块中引入额外的控制机制来扩展现有的体系结构.
  3. 此外,为了对模型进行有效的医学图像训练,我们提出了一种局部-全局训练策略(LOGO),进一步提高了模型的性能。

Medical Transformer

MedT 有两个分支机构:一个全局分支和一个本地分支。
这两分支的输入是从初始卷积块提取的特征图。
在 MedT 的全局分支中,我们有 2 个编码器块和 2 个解码器块。
在本地分支

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值