Medical Transformer: Gated Axial-Attention for Medical Image Segmentation

                             Medical Transformer: Gated Axial-Attention for Medical Image Segmentation

 

现有的技术背景及其局限:

  1. 深度卷积体系结构缺乏对图像中的远程依赖关系的把握。
  2. 用于医学成像的数据样本数量相对较少,使得有效训练用于医学得transformer变得困难。

探索解决方案:

  1. 基于 Transformer 的体系结构利用自我注意机制,编码长期依赖关系,并具有极富表现力的表示法.
  2. 我们提出了一种门控轴向注意模型,通过在自我注意模块中引入额外的控制机制来扩展现有的体系结构.
  3. 此外,为了对模型进行有效的医学图像训练,我们提出了一种局部-全局训练策略(LOGO),进一步提高了模型的性能。

Medical Transformer

MedT 有两个分支机构:一个全局分支和一个本地分支。
这两分支的输入是从初始卷积块提取的特征图。
在 MedT 的全局分支中,我们有 2 个编码器块和 2 个解码器块。
在本地分支中,我们有 5 个编码器块和 5 个解码器块。

gated axial transformer layer

Gated Axial-Attention的推导

  1. Self-Attention

                    计算这种全局亲和度关系是非常昂贵的,并且随着特征图大小的增加,将 Self-Attention 用于视觉模型体系结构通常变得不可行。

      2.Axial-Attention

 

                      为了克服亲和度计算的复杂性,将自我注意分解为两个自我注意模块,具有更好的运算效率,上图示例沿宽度注意并加上位置偏差项.但是在小规模数据集上,位置偏差可能很难学习准确,导致性能降低.

       3.Gated Axial-Attention

 

                        GQ、GK、GV1、GV2 是可学习的参数,它们共同创建门控机制,以分配不同权重的方式,控制位置偏差对编码的影响.如果准确地学习了相对位置编码,则与未准确学习的编码相比,门控机制将为其分配较高的权重。

Local-Global Training 策略

在全局分支中,我们减少了gated axial transformer layers的数量,因为我们发现所提出的transformer模型的前几个块足以模拟长距离依赖关系。

在局部分支中,我们创建大小为I/4×I/4的16个图像块,其中I是原始图像的尺寸。在局部分支中,每个patch通过网络进行前向反馈,并根据其位置对输出特征图进行重新采样,以获得输出特征图。

然后将两个分支的输出特征图相加并通过1×1卷积层以产生输出分割掩码.全局分支关注的是高层信息,而局部分支关注的是更精细的细节。
 

损失函数L,使用交叉熵

 

 

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值