800万像素车载摄像头的一些思考

本文探讨了800万像素摄像头在汽车领域的应用,涉及与算力、算法和数据的关系,强调了高分辨率对算力需求的提升、算法模型的调整以及现有数据的复用。文中举例了大疆和地平线的自动驾驶解决方案,展示了不同厂商如何应对技术挑战和性能优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 800万像素摄像头与算力、算法以及数据的关系

随着800万像素摄像头在2021款理想One上首次量产应用,800万像素摄像头的议论热潮
再次兴起。有一个话题大家普遍很关注,那就是800万像素摄像头与算力、算法以及数据之
间的关系,

例如:如果用800万像素摄像头代替之前低分辨率摄像头,需要多大算力的芯片
的支持?原来的算法是否需要重写?采用低像素摄像头积累的数据,现在是否能还能复
用?


1. 1  800万像素摄像头与算力

摄像头算力需求跟哪些因素有关?

对于车辆配置1个或多个800万像素摄像头,大致需要多大的算力支持,这个是否有计算公式可以评估?

摄像头对计算平台算力的需求,不仅跟摄像头自身的性能参数有关,比如摄像头的位数、分辨率、帧率等,同时也与摄像头的应用场景以及采用的算法模型有很大关系。

如果算法固定,识别同样的东西,肯定是摄像头的分辨率越高,需要的算力越大;

但是,从总体来讲,摄像头的应用场景和所采用的算法模型和算法策略对算力的影响是更大的。
摄像头分辨率越高,需要的数据存储量肯定越大,计算能力需求也会更大。但是多大的分辨率对应多大的算力,是没有直接对应关系的,也是不太好直接用公式去衡量。


比如现在新势力规划的车型,摄像头的配置基本差不多,但是计算平台的算力差别却很
大,这是为什么呢?

首先,因为他们的算法模型可能本身就不太一样;

其次,系统对算力的需求是持续提升的,硬件的算力资源需要提前预留好,他们对算力资源的预留程度层面的考虑也是不同的。
同时,跟具体的应用场景也有很大关系,以前视为例,基于同样分辨率的摄像头,如果
其应用场景仅限于识别车辆、行人、车道线这三类目标,其对算力的需求相对来说是一个
轻量级的。
若其应用场景需要系统识别的目标更多、探测的距离更远、识别的精度更高,不但要识
别上述三类目标,还要识别红绿灯、限速牌、路标、路杆、多车道车道线等。

障碍物的区分不仅包括车辆、行人,还包含了骑自行车人和骑三轮车人,甚至还增加非标准目标进行检测,这样的应用场景对算力的需求肯定是更大量级的。”


1.2. 800万像素摄像头与算法


如果用800万像素摄像头代替之前低分辨率摄

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

free-xx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值