(二)1.高级线性规划 之 对偶问题

这一篇文章我们专门说一说线性规划的对偶问题:

引例

一个公司,生产的设备如下:
在这里插入图片描述从之前的学习来看,我们可以列出一个线性规划式子

    max = 2x1 + x2
s.t.    5x2 <=15
		6x1 + 2x2 <= 24
		x1 + x2 <=5
		x1,x2 >=0	 

现在我们假设这样一个情况,另外一个公司想承包这个器械,那我们看一看应该是怎么样的线性规划?

很显然,首先要的是花费最少,条件是给的钱必须要比他们自己生产要高

   min =  15y1 + 24y2 + 5y3
s.t.    6y2 + y3 >= 2
		5y1 + 2y2 +y3 >=1
		y1,y2 >=0 

这样,这两个式子就是对偶式子

下面总结规律

1.一条限制条件对应其对偶问题的一个变量
2.max 的对偶问题是 min
3.对偶问题的 限制条件的符号 和变量大小符号之间有联系,下面细说
4.原问题的资源限量和对偶问题的系数有关系

首先,我们学会用矩阵的形式去描述一个线性规划问题

我们定义下面几个向量:

C = ( C1 , C2)  ----对应原问题的系数矩阵 
b =[ b1 ]  
   [ b2 ]       ----对应原问题的资源限量
Y = (Y1 , Y2 )  ----对应对偶问题的变量
X =[ X1 ]
   [ X2 ]       ----对应原问题的变量

下面我们会用这种表示方法去表示一个线性规划问题

得到了第一个公式:


小于等于形式的对偶


max z = C X                                         min = Y b
s.t.  AX <= b            ⇒                         s.t. YA >= C
	    X >=0                                              Y >=0

(其中的乘法都是 矩阵的乘法)
这个就是我们上面说的问题


大于等于形式的对偶


max z = C X                                         min = Y b
s.t.  AX >= b            ⇒                         s.t. YA >= C
	    X >=0                                              Y <=0

证明:

我们把式子转换成标准型:
max z = C X                                         min = -Y b
s.t.  -AX <= -b            ⇒                       s.t. -YA >= C
	    X >=0                                              Y >=0

到此就很显然了,我们把 -Y = y,就可以得到公式中的答案
min = yb
s.t.  yA >=C
	  y<=0

等于形式的对偶


max z = C X                                         min = Y b
s.t.  AX = b            ⇒                         s.t. YA >= C
	    X >=0                                              Y 无限制

证明:

我们一样尝试化成标准型
max z = C X                                       max z =C X
s.t.  AX <= b            ⇒                       s.t.   AX <= b
	  AX >= b										    -AX<= -b
	    X >=0                                            X>=0
化成矩阵就是
[ A]    [ b]
[-A]X <=[-b]  画的比较抽象,给个图吧

在这里插入图片描述
这时候我们发现已经和第一种情况一样了,只要按照公式就可以

在这里插入图片描述
再根据矩阵乘法展开,我们发现,最后可以写出这样的式子

min =  (Y1 - Y2)b
s.t.  (Y1-Y2)A >=C
	  Y1,Y2>=0
令 Y1 - Y2 =y
得到了公式:
min =yb
s.t. yA>=c
      y无限制

到此我们列出所有的情况,总结一下:

1.max => min  约束和变量一一对应
 约束<=     ⇒      变量>=             
 约束>=     ⇒      变量<=       
 约束 =     ⇒      变量无限制       
 变量<=     ⇒      约束<=             
 变量>=     ⇒      约束>=       
 变量无限制 ⇒      约束=
2.min => max  约束和变量一一对应
 约束<=     ⇒      变量<=             
 约束>=     ⇒      变量>=       
 约束 =     ⇒      变量无限制   
 变量<=     ⇒      约束>=             
 变量>=     ⇒      约束<=       
 变量无限制 ⇒      约束=

是不是看着慌了?
总结一下:
1.大变小,约束对应对偶的变量取反符号,变量对对偶规律相反

2.小变大,约束对应对偶的变量取原符号,变量对对偶规律相反

在这里插入图片描述Over,需要练习的,加油

为了在Windows安装ADB工具,你可以按照以下步骤进行操作: 1. 首先,下载ADB工具包并解压缩到你自定义的安装目录。你可以选择将其解压缩到任何你喜欢的位置。 2. 打开运行窗口,可以通过按下Win+R键来快速打开。在运行窗口中输入"sysdm.cpl"并按下回车键。 3. 在系统属性窗口中,选择"高级"选项卡,然后点击"环境变量"按钮。 4. 在环境变量窗口中,选择"系统变量"部分,并找到名为"Path"的变量。点击"编辑"按钮。 5. 在编辑环境变量窗口中,点击"新建"按钮,并将ADB工具的安装路径添加到新建的路径中。确保路径正确无误后,点击"确定"按钮。 6. 返回到桌面,打开命令提示符窗口。你可以通过按下Win+R键,然后输入"cmd"并按下回车键来快速打开命令提示符窗口。 7. 在命令提示符窗口中,输入"adb version"命令来验证ADB工具是否成功安装。如果显示版本信息,则表示安装成功。 这样,你就成功在Windows安装ADB工具。你可以使用ADB工具来执行各种操作,如枚举设备、进入/退出ADB终端、文件传输、运行命令、查看系统日志等。具体的操作方法可以参考ADB工具的官方文档或其他相关教程。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [windows环境安装adb驱动](https://blog.csdn.net/zx54633089/article/details/128533343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Windows安装使用ADB简单易懂教程](https://blog.csdn.net/m0_37777700/article/details/129836351)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值