AI套壳千千万万,你最喜欢哪一款?现在各种ChatGPT替代品层出不穷,但是大部分都是使用OpenAI的API,也就说离不开网络。
今天我们推荐的开源项目它就是要帮你100%在本地运行大模型,进而构建一个属于自己的ChatGPT,本项目目前在GitHub已超过6K Star,它就是:Jan。
Jan是什么?
Jan 是一个开源 ChatGPT 替代品,可以在您的计算机上 100% 离线运行。
Jan支持从 PC 到多 GPU 集群的各种类型环境,以下是Jan支持运行环境类型:
- Nvidia GPU(快速)
- Apple M 系列(快速)
- 苹果英特尔
- Linux Debian
- Windows x64
下面是它的GitHub star历史,进入2024年,Jan就像坐上了火箭,一下子就起飞了。
为什么用 Jan
对比与同类产品,我们整理了一下Jan具备的特点:
- 支持广泛:支持各种开源的LLM(GGUF ,TensorRT)
- 跨平台支持:Windows、Mac、Linux,并通过Llama.cpp使用GPU加速。从本质上讲,Jan 是一个跨平台、本地优先的 AI 原生框架,可用于构建任何东西。在开发中Jan努力遵循 Clean Architecture,努力去构建一个跨平台的应用。
- 本地数据存储:数据存在本地,没有安全风险,并可以导出和迁移。
- 提供本地API server,可以快速提供本地服务。
- 支持扩展,可以自己开发扩展。
安装 Jan
安装包安装:
我的电脑是Mac,可以通过主页jan.ai/下载对应的安装包,当然…
下载完成,只需要点击安装,就可以安装好了。
源码安装:
源码安装首先要确定2个前提:
Node.js 版本: 20.0.0 +
Yarn 版本 1.22.0 +
接下来下载源码:
git clone <https://github.com/janhq/jan>
git checkout DESIRED_BRANCH
cd jan
使用yarn来安装依赖:
yarn install
# Build core module
yarn build:core
# Packing base plugins
yarn build:plugins
# Packing uikit
yarn build:uikit
最后启动项目:
yarn dev
使用Jan
打开Jan之后,我们首先要安装模型。Jan里面自带了hub,可以直接找到各种模型。
我直接安装了推荐的Mistral 7B,最近也很火的。
Jan里面thread就相当于是会话。在右侧区域可以快速新建thread开始使用,还可以配置预设参数,以及切换模型等。
Jan当中支持灵活的编辑,比如想针对thread进行编辑,点三个点,就可以直接到JSON里编辑修改。
对于扩展来说,目前除了安装自带的,我还没看到能安什么,看来要等等。
Jan 附带了一个内置 API 服务器,可以用作 OpenAI API 的直接本地替代品。可以在设置中启用API server,默认会在1337端口。这是文档中说的,我装的stable版本里面没找到。
使用上其他就没有,大家自己试试,可以多交流。
项目信息
- 项目名称:Jan
- GitHub 链接:github.com/janhq/jan
- Star 数:6.3K+
大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
-END-
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓