普华永道人工智能分析评选报告
pwc-ai-analysis-sizing-the-prize-report
一、 摘要
这份报告主要从商业和经济的角度分析了人工智能(AI)的影响。以下是文档中的主题解析:
1. AI的经济影响
- 全球GDP增长:到2030年,AI可能会使全球GDP增长14%,相当于增加15.7万亿美元。
- 地区差异:中国和北美可能成为最大的受益者,其中中国的GDP可能增长26%,北美增长14%。
- 行业影响:零售、金融服务和医疗保健等行业可能从AI中获得最大的生产力提升、产品质量改进和消费增长。
2. AI的定义和形式
- 定义:AI是能够感知环境、思考、学习并根据目标采取行动的计算机系统。
- AI的形式:
- 自动化智能:自动化手动和认知任务。
- 辅助智能:帮助人们更快更好地完成任务。
- 增强智能:帮助人们做出更好的决策。
- 自主智能:无需人类干预即可做出决策。
3. AI的影响指数(AI Impact Index)
- 用途:评估AI在不同行业和用例中的潜力,考虑个性化、质量、功能改进等因素。
- 分析方法:结合自上而下和自下而上的分析,评估AI对经济的影响。
4. AI带来的价值来源
- 生产力提升:通过自动化和增强员工能力来提高生产力。
- 消费需求增长:由于AI增强的产品和服务,消费者需求可能增加,进而推动GDP增长。
5. AI对不同地区的影响
- 地区差异:不同地区因AI技术的采用率不同,经济增长潜力也不同。
- 案例分析:北美可能因技术成熟和消费者准备度高而迅速获益;中国可能因制造业占比高而逐步实现显著增长。
6. AI在各行业的潜力和应用场景
- 医疗保健:AI可辅助诊断、早期识别疫情、影像诊断等。
- 汽车业:AI支持自动驾驶车队、半自动驾驶功能、发动机监控和预测性维护。
- 金融服务:AI用于个性化财务规划、欺诈检测和流程自动化。
- 零售业:AI实现个性化设计与生产、预测客户需求、库存与交付管理。
- 技术、通信和娱乐:AI在媒体归档与搜索、定制内容创作、个性化营销方面有潜力。
- 制造业:AI增强监控与自动校正、供应链与生产优化、按需生产。
- 能源业:AI用于智能电表、电网高效运行与存储、预测性基础设施维护。
- 运输与物流:AI支持自动驾驶卡车与配送、交通控制与减少拥堵、增强安全性。
7. 企业如何应对AI的挑战
- 战略评估:企业需要评估AI对其业务的影响,识别痛点并确定如何应对。
- 优先响应:根据业务目标和变革准备情况,决定成为早期采用者、快速跟随者还是跟随者。
- 人才与技术:投资于数据科学家、机器人工程师等技术专家,并准备混合劳动力。
- 治理与控制:确保AI的透明度和可解释性,建立信任和透明的AI平台。
8. 结论与建议
- 市场变化:AI可能通过创造新服务和商业模式彻底颠覆市场。
- 关键问题:企业需要评估自身业务模式对AI颠覆的脆弱性,寻找市场中的变革机会,确保拥有合适的人才、数据和技术,并在AI平台中建立信任和透明度。
这份报告提供了AI如何影响全球经济和各行业的深入分析,并为企业如何利用AI机遇提供了战略指导。如果你是AI初学者,这份报告提供了很好的起点,帮助你理解AI的潜力和挑战。
二、 以下是普华永道《Sizing the prize》报告的中文翻译内容:
人工智能的经济影响
- 普华永道研究显示,到2030年,人工智能(AI)有望使全球GDP增长高达14%,相当于额外增加15.7万亿美元,这在当今快速变化的经济中是一个巨大的商业机会。
- 从地区来看,中国和北美地区将从AI中获益最大,分别在2030年实现约26%和14.5%的GDP增长。
- 从行业来看,金融服务和制造业等行业将获得最大的AI收益。
人工智能的定义与形式
- 广义定义:AI是计算机系统,能够感知环境、思考、学习,并根据感知和目标采取行动。
- AI的形式:
- 自动化智能:自动化手动/认知和常规/非常规任务。
- 辅助智能:帮助人们更快更好地完成任务。
- 增强智能:帮助人们做出更好的决策。
- 自主智能:无需人工干预即可自动做出决策。
人工智能的系统类型
- 硬编码/特定系统:辅助智能AI系统,协助人类做出决策或采取行动,不从互动中学习。
- 自适应系统:增强智能AI系统,增强人类决策并从与人类和环境的互动中持续学习。
- 自主智能系统:能够适应不同情况并自主行动,无需人类协助。。
报告结构与目的
- 目录:报告包含引言、AI的大奖与影响、AI影响指数、实现潜力和结论等部分。
- 引言:探讨AI对组织的影响,是否威胁业务模式,以及如何投资和提升能力。强调构建负责任和透明的AI以维持客户和利益相关者的信心。报告旨在帮助企业创建AI投资和发展的清晰、有说服力的商业案例,强调AI不仅限于自动化,还能增强和扩展企业能力。
- AI影响指数:分析AI在个性化/定制化、质量和功能方面的改进如何提升价值、选择和需求,以及AI在近300个用例中的转型和颠覆速度。
- 行业分析:报告将深入分析特定行业和功能领域,如营销、财务和人才管理,并与Forbes杂志合作发布AI前沿商业领袖的访谈。
人工智能的经济潜力
- 经济影响:到2030年,AI可能为全球经济贡献高达15.7万亿美元,超过中国和印度当前产出总和。其中,6.6万亿美元可能来自生产力提升,9.1万亿美元可能来自消费端效应。
- 收益来源:到2030年,全球GDP增长的58%将来自消费端的影响。随着新技术的逐步采用和消费者对改进产品的反应,产品创新的影响份额将随时间增加。
人工智能在各行业的潜力和应用场景
- 医疗保健:到2030年,AI对医疗保健行业的经济影响预计为5.1万亿美元,占该行业GDP的20.7%。AI在医疗保健中的应用案例识别率为37%,其中23%的应用案例已确定,40%的应用案例具有高潜力。例如,数据驱动的诊断支持可以增强医生的诊断能力,通过患者独特病史作为基线,检测小偏差以识别潜在健康问题。AI系统通过与医生的互动不断学习和改进,最终可能完全自主运行。
- 金融服务:AI对金融服务行业的经济影响预计为2.1万亿美元,占该行业GDP的10.0%。AI在金融服务中的应用案例识别率为41%,其中69%的应用案例已确定,0%的应用案例具有高潜力。例如,个性化金融规划工具如topo-surface使大众市场消费者能够获得定制化投资解决方案,这在过去仅限于高净值客户。AI管理财务以匹配目标(如购房贷款)并优化可用资金,资产管理者被AI增强甚至部分取代。尽管技术与数据已就绪,但客户接受度仍需提高以实现全部潜力。
- 制造业:AI对制造业的经济影响预计为4.0万亿美元,占该行业GDP的11.9%。AI在制造业中的应用案例识别率为14%,其中83%的应用案例已确定,3%的应用案例具有高潜力。例如,个性化设计与生产可以根据需求定制服装和消费品。以时尚和服装为例,未来可能实现完全互动和定制化的设计与供应,AI创建的服装模型在线销售,小批量自动化生产,并根据用户反馈调整设计。
- 零售和消费:AI对零售和消费行业的经济影响预计为2.0万亿美元,占该行业GDP的14.8%。AI在零售和消费中的应用案例识别率为54%,其中38%的应用案例已确定,8%的应用案例具有高潜力。
- 能源:AI对能源行业的经济影响预计为1.7万亿美元,占该行业GDP的12.0%。AI在能源中的应用案例识别率为39%,其中44%的应用案例已确定,17%的应用案例具有高潜力。例如,智能电表帮助客户调整能源消耗并降低成本。更广泛的使用将开辟大量数据源,为定制化关税和更高效的供应铺平道路。
- 运输和物流:AI对运输和物流行业的经济影响预计为5698亿美元,占该行业GDP的10.3%。AI在运输和物流中的应用案例识别率为42%,其中42%的应用案例已确定,16%的应用案例具有高潜力。例如,自动驾驶卡车通过提高资产利用率和实现24/7运行来降低成本。此外,运输和物流行业的商业模式可能会被新市场参与者颠覆。
- 技术、通信和娱乐:AI对技术、通信和娱乐行业的经济影响预计为3058亿美元,占该行业GDP的12.4%。AI在技术、通信和娱乐中的应用案例识别率为47%,其中36%的应用案例已确定,17%的应用案例具有高潜力。例如,媒体存档与搜索提供更高效的分类和存档选项,处理大量现有和新生成的内容(如在线视频),为更精准的目标定位和增加收入铺平道路。
企业如何应对人工智能的挑战
- 战略层面:明确AI如何帮助企业实现长期战略目标(如提升市场份额、优化成本、增强客户体验等);评估AI是否能帮助企业在市场中获得竞争优势,或是否能进入新的市场领域。
- 运营层面:识别哪些现有流程可以通过AI自动化来提高效率(如数据输入、客户服务、库存管理等);评估AI能否增强数据分析和决策能力,如预测性分析、风险评估等;探索AI如何推动产品、服务或商业模式的创新。
- 财务层面:计算通过AI自动化或优化运营可节省的成本(如减少人工、降低错误率等);估算AI带来的新收入机会(如个性化推荐、新市场拓展等);评估AI项目的初始投资与预期收益之间的关系。
- 技术层面:检查企业是否拥有足够的高质量数据来支持AI模型的训练和运行;评估企业现有的技术基础设施是否能够支持AI的部署(如云计算、数据存储、计算能力等);确定企业是否具备或能否获取必要的技术人才(如数据科学家、AI工程师等)。
- 组织层面:分析企业文化和员工对AI技术的接受程度,以及是否需要进行组织变革;评估员工是否需要额外的培训来适应AI驱动的工作环境;考虑如何让人类员工与AI系统有效协作,以实现最佳绩效。
- 风险与合规层面:评估AI系统可能出现的技术故障或性能问题;考虑AI应用可能引发的伦理问题(如隐私侵犯、算法偏见等);确保AI的应用符合相关法律法规(如数据保护法规、行业标准等)。
- 市场与竞争层面:了解行业内外的AI应用趋势,以及竞争对手如何利用AI;评估客户对AI驱动的产品或服务的需求和期望;探索与其他企业或技术供应商合作的机会,以加速AI的实施。
- 实施与监测层面:通过小规模的AI试点项目来测试和验证AI的潜在价值;定义用于衡量AI项目成功的关键指标(如效率提升百分比、客户满意度变化等);建立监测机制,定期评估AI系统的性能,并根据结果进行调整。
结论与建议
- 市场变化:AI可能通过创造新服务和商业模式彻底颠覆市场。一些市场领导者可能被今天的初创公司甚至尚未成立的公司所取代。
- 关键问题:企业需要评估自身业务模式对AI颠覆的脆弱性;寻找市场中的变革机会;确保拥有合适的人才、数据和技术;在AI平台中建立信任和透明度。
三、如何评估AI对企业的影响?
评估AI对企业的影响是一个系统性的过程,需要从多个维度进行分析。以下是一个详细的评估框架:
1. 战略层面:评估AI与企业目标的契合度
- 业务目标对齐:明确AI如何帮助企业实现长期战略目标(如提升市场份额、优化成本、增强客户体验等)。
- 市场定位:评估AI是否能帮助企业在市场中获得竞争优势,或是否能进入新的市场领域。
2. 运营层面:识别AI对核心业务流程的影响
- 流程自动化潜力:识别哪些现有流程可以通过AI自动化来提高效率(如数据输入、客户服务、库存管理等)。
- 决策支持:评估AI能否增强数据分析和决策能力,如预测性分析、风险评估等。
- 创新机会:探索AI如何推动产品、服务或商业模式的创新。
3. 财务层面:量化AI的潜在经济价值
- 成本节约:计算通过AI自动化或优化运营可节省的成本(如减少人工、降低错误率等)。
- 收入增长:估算AI带来的新收入机会(如个性化推荐、新市场拓展等)。
- 投资回报率(ROI):评估AI项目的初始投资与预期收益之间的关系。
4. 技术层面:评估AI的实施可行性
- 数据基础:检查企业是否拥有足够的高质量数据来支持AI模型的训练和运行。
- 技术能力:评估企业现有的技术基础设施是否能够支持AI的部署(如云计算、数据存储、计算能力等)。
- 技术人才:确定企业是否具备或能否获取必要的技术人才(如数据科学家、AI工程师等)。
5. 组织层面:评估企业文化和能力的适应性
- 组织变革管理:分析企业文化和员工对AI技术的接受程度,以及是否需要进行组织变革。
- 技能提升:评估员工是否需要额外的培训来适应AI驱动的工作环境。
- 混合劳动力模式:考虑如何让人类员工与AI系统有效协作,以实现最佳绩效。
6. 风险与合规层面:识别潜在风险并制定应对策略
- 技术风险:评估AI系统可能出现的技术故障或性能问题。
- 伦理与社会影响:考虑AI应用可能引发的伦理问题(如隐私侵犯、算法偏见等)。
- 监管合规性:确保AI的应用符合相关法律法规(如数据保护法规、行业标准等)。
7. 市场与竞争层面:分析外部环境的影响
- 市场趋势:了解行业内外的AI应用趋势,以及竞争对手如何利用AI。
- 客户需求变化:评估客户对AI驱动的产品或服务的需求和期望。
- 合作伙伴生态:探索与其他企业或技术供应商合作的机会,以加速AI的实施。
8. 实施与监测层面:制定行动计划并跟踪进展
- 试点项目:通过小规模的AI试点项目来测试和验证AI的潜在价值。
- 关键绩效指标(KPIs):定义用于衡量AI项目成功的关键指标(如效率提升百分比、客户满意度变化等)。
- 持续监测与调整:建立监测机制,定期评估AI系统的性能,并根据结果进行调整。
实际案例:如何应用以上框架
假设你是一家零售企业的管理者,想评估AI驱动的个性化推荐系统的影响:
- 战略层面:个性化推荐是否与企业提升客户忠诚度和增加销售额的目标一致?
- 运营层面:该系统能否自动化分析购买行为并实时推荐产品?
- 财务层面:预计能提升多少销售额?初始投资是多少?ROI如何?
- 技术层面:企业是否有足够的客户数据和推荐算法所需的技术能力?
- 组织层面:员工是否需要培训以管理推荐系统?客户是否愿意接受AI推荐?
- 风险与合规层面:推荐系统是否可能产生隐私问题或算法偏见?
- 市场与竞争层面:竞争对手是否已在使用类似系统?客户对个性化推荐的接受程度如何?
- 实施与监测层面:先在部分门店试点,跟踪销售额和客户反馈,然后逐步推广。
总结
评估AI对企业的影响需要综合考虑战略、运营、财务、技术、组织、风险、市场和实施等多个方面。通过系统性的分析,企业可以更清晰地理解AI的潜在价值和挑战,从而制定合理的AI战略和实施计划。作为AI初学者,你可以从简单的项目入手,逐步积累经验并扩展到更复杂的AI应用场景。
四、AI在提升市场份额方面有哪些具体应用?
以下是AI在提升市场份额方面的一些具体应用:
一、精准营销与客户定位
- 精准客户画像与细分:AI能够分析海量消费者数据,包括消费行为、偏好、人口统计学特征等,为每个客户绘制精准画像。如某化妆品品牌利用AI分析消费者的肤质特征、年龄层次、消费偏好等,将客户细分为追求天然成分的敏感肌年轻群体、注重抗衰功效的熟龄群体等。针对每个群体制定个性化的营销策略,显著提升了客户的参与度和购买转化率。
- 个性化推荐与促销:基于客户画像和行为数据,AI可以为客户提供个性化的产品推荐和促销方案。例如,在电商平台,AI系统会根据用户的浏览历史和购买记录,推荐符合其兴趣和需求的商品。这种个性化推荐能够提高客户的购买意愿和满意度,从而增加市场份额。
二、市场分析与趋势预测
- 竞品动态监测与分析:AI可以通过爬取和分析社交媒体、行业论坛、新闻报道等多渠道信息,实时了解竞品的市场策略调整、产品特点、价格变化等动态。使企业能够迅速做出反应。比如,医药企业的市场经理借助AI软件,能提前3-5天预测竞品的市场策略调整,为自身企业争取宝贵的时间制定应对方案。
- 市场趋势预测与产品优化:AI能够分析历史数据和市场趋势,预测消费者需求的变化。企业可以据此提前布局,调整产品研发方向和优化产品特性。例如,某智能穿戴设备制造商运用AI预测到下一季度运动监测功能将成为消费者选购智能手环的核心考量因素,提前加大研发投入推出新品,产品上市后迅速占领市场份额。
三、提升客户体验与忠诚度
- 智能客服与支持:AI驱动的智能客服可以24/7在线为客户提供即时、准确的服务。解决客户的问题和疑虑,提高客户的满意度和忠诚度。例如,某电商平台的智能客服能够快速响应客户的咨询,解答产品信息、处理订单问题等。
- 个性化体验与互动:在内容定制方面,AI能够根据客户画像和行为数据,自动生成贴合不同客户兴趣和需求的营销内容。如新闻媒体网站根据用户的阅读偏好,推荐感兴趣的新闻文章;视频平台根据用户的观看历史,推荐符合其口味的影视作品。
四、优化供应链与运营
- 需求预测与库存管理:AI可以分析销售数据、市场趋势、季节性因素等,准确预测产品的需求,帮助企业优化库存管理。例如,某服装品牌利用AI预测下一季的销售趋势,提前调整生产计划和库存水平,避免库存积压或缺货现象。
- 物流与配送优化:在物流领域,AI可以优化运输路线规划,结合实时交通与天气数据,智能调度车队。某物流公司通过AI优化运输路线,降低了运输成本,提高了准时送达率。
五、创新产品与服务
- 产品创新与差异化:AI能够帮助企业挖掘新的市场需求和痛点,推动产品创新。如某制造企业引入AI技术后,利用数据分析市场趋势,成功研发新产品,实现从传统制造向智能智造与服务的转型。
- 服务创新与拓展:金融机构利用AI对金融市场数据深度分析,开发智能投资顾问服务,为投资者量身定制投资策略。医院借助AI分析患者病历与医疗影像数据,为患者提供个性化健康管理方案。
五、制造业如何利用AI提高效率?
以下是制造业利用AI提高效率的多种方式:
生产流程优化
- 智能排产与调度:AI可依据订单优先级、原材料库存、设备状态等多维度数据,动态调整生产计划,确保资源最优配置,减少生产等待时间与资源浪费,提升整体生产效率。
- 工艺参数优化:通过对历史生产数据和实时监测数据的分析,AI能够优化设备运行参数,提高生产效率和产品质量,同时降低能源消耗。例如在注塑机等耗能设备中,AI节能技术的应用可使电力消耗减少15%以上。
质量检测与控制
- AI视觉检测:利用计算机视觉技术,AI系统可通过高清摄像头对产品进行快速扫描,实时识别表面缺陷、尺寸偏差等问题,其准确率和效率远超人工检测,如某汽车制造厂引入AI质检系统后,漏检率下降了90%,检测速度提升了5倍。
- 质量预测与预警:一旦检测到潜在风险,AI系统会自动调整工艺参数,或者通知工作人员进行干预,将质量问题扼杀在萌芽状态,从而降低次品率,减少返工成本。
设备维护与管理
- 预测性维护:借助机器学习算法,AI能够分析设备的振动、温度、压力等传感器数据,预测设备可能出现故障的时间,提前安排维护保养,避免突发性停机。某半导体工厂采用AI预测性维护系统后,设备故障率降低了40%,每年节省了数百万元的维修成本。
- 设备健康管理:通过对设备运行数据的持续监测和分析,AI可以实时评估设备的健康状况,为设备的稳定运行提供保障,延长设备使用寿命。
供应链管理
- 需求预测与库存管理:AI对供应链中的海量数据进行分析,包括市场需求预测、库存管理等。通过对历史销售数据、市场趋势、季节因素等信息的学习,AI能精准预测产品需求,帮助企业合理安排生产计划,避免库存积压或缺货情况的发生。
- 物流优化:在物流配送环节,AI优化路径规划与车辆调度。通过整合交通状况、货物重量、配送时间要求等信息,AI算法能够计算出最优的配送路线,减少运输时间和成本。同时,AI还能对物流车辆进行实时监控,预测车辆故障风险,提前安排维护,保障物流运输的顺畅。
机器人技术集成
- 自主移动机器人(AMR):配备了先进的导航系统,AMR能够自主规划路径并避开障碍物,大幅提高了物料搬运的效率,实现物流自动化,减少人工搬运成本和错误率。
- 协作机器人:具备视觉AI的协作机械臂能够与工人安全地共同作业,完成精密组装等复杂任务,进一步拓展了自动化生产的可能性,提高了生产效率和产品质量。
数据分析与决策支持
- 数据挖掘与洞察:AI可快速处理和分析制造业产生的大量数据,提取有价值的信息和模式,为企业提供深入的市场洞察、客户偏好分析等,助力企业制定更精准的营销策略和产品研发方向。
- 智能决策辅助:基于数据分析结果,AI能够为管理层提供智能决策支持,帮助其快速做出更明智的决策,提高企业的运营效率和市场响应速度。
六、以下是确保AI视觉检测准确性的方法:
1. 硬件配置与校准
- 相机与镜头选型:根据检测任务需求,选择合适分辨率、帧率、精度的相机,以及焦距、光圈等参数匹配的镜头,以确保获取清晰、准确的图像。例如,检测微型精密部件时,需选用高分辨率、高精度的相机和微距镜头。
- 光源与照明设计:采用合适的光源类型(如自然光、荧光灯、LED灯等)和照明方式(如背光、前光、暗场等),突出物体特征,减少阴影和反光干扰。例如,检测透明或半透明物体时,背光照明可清晰显示物体轮廓;检测表面缺陷时,低角度暗场照明可使缺陷产生明亮反射,便于识别。
- 设备安装与校准:精确安装相机、镜头和光源,确保设备稳定、图像采集准确。定期对相机进行标定,以获得准确的内参和外参,补偿光学畸变和位置偏差。
2. 数据质量把控
- 数据采集与标注:采集大量具有代表性和多样性的样本数据,涵盖不同物体状态、环境条件和缺陷类型。对数据进行准确标注,明确缺陷类型、位置和严重程度等信息,以便模型学习和识别。
- 数据预处理与增强:对采集的数据进行清洗,去除噪声和无效数据。采用数据增强技术,如旋转、翻转、缩放、裁剪、调整亮度和对比度等,扩充数据集规模,提高模型的泛化能力和适应性。
3. 算法与模型优化
- 算法选择与定制:根据检测任务特点和数据特性,选择合适的AI算法,如卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)等。针对特定需求,对算法进行定制和优化,以提高检测精度和效率。
- 模型训练与验证:使用高质量的数据集对模型进行充分训练,合理设置训练参数,如学习率、批次大小、迭代次数等。采用交叉验证、独立测试集验证等方法,评估模型的性能和泛化能力,避免过拟合和欠拟合现象。
4. 系统集成与测试
- 系统集成与协同:将AI视觉检测系统与其他相关系统(如生产管理系统、自动化设备等)进行集成,实现信息共享和协同工作。确保系统之间的接口和通信协议兼容,保证检测结果的及时传输和处理。
- 系统测试与优化:在实际生产环境中对整个AI视觉检测系统进行全面测试,包括检测准确性、速度、稳定性、可靠性等方面的测试。根据测试结果,对系统进行优化和调整,解决可能出现的问题,如误报、漏报、系统卡顿等。
5. 持续监控与维护
- 性能监控与评估:建立性能监控机制,实时监测AI视觉检测系统的运行状态和检测结果。定期对系统性能进行评估,分析检测准确率、漏检率、误检率等指标的变化趋势,及时发现潜在问题。
- 模型更新与维护:随着生产条件、物体特征和缺陷类型的变化,定期对模型进行更新和维护。重新训练模型或调整模型参数,以适应新的检测需求,保持系统的准确性和可靠性。
七、 腾讯研究院观点
人工智能对劳动市场影响的四个特点
(一)机器劳动时长增加将减少劳动力工作时间。世界经济论坛报告显示,人类和机器之间工作时长再分配正在进行,到2025年,人类和机器工作时长将会持平。算法和机器将主要集中在信息和数据处理和检索、管理任务以及传统体力劳动的部分方面。人类在管理、建议、决策、推理、沟通和互动等工作方面会保持比较优势。2025年,冗余劳动力工作占比将从15.4%下降到9%,新兴职业占比将从7.8%上升到13.5%。
(二)新增就业多为新职业或发生重大变化后的现有职业。20个经济体中共有99个需求持续增长的工作岗位,且这些工作技能相似,进一步形成不同的专业集群,向云计算、工程、数据与AI、文化与内容、销售聚集。从就业岗位看,数据分析师、AI工程师、大数据工程师、自动化工程师、软件工程师等需求将大幅增加,机器操作员、行政人员、会计、图书管理员等重复性需求将缩减。
图2:专业集群转化与聚集
(三)新技术对不同行业的影响显著不同。从行业看,交通业、制造业、建筑业、零售业就业替代将比较显著。2030年以前,金融服务将受到较为明显的冲击,而对交通业的冲击将体现在自动驾驶技术成熟以后。教育业、医疗、饮食等行业受到的影响则相对微弱。
图4:存在自动化风险的潜在行业
(四)不同人群受到影响有所差异。国际劳工组织《2021年世界就业和社会展望》报告[7]显示,数字平台为传统劳动力市场中被边缘化的人群提供了新的工作机会,并帮助企业获得个性化和灵活的劳动力。受教育程度高低、性别也有差异,长期而言中低等受教育人群将受到较大冲击。
经济结构和人才结构将是决定从人工智能发展中获益能力的重要因素
(一)中国的经济结构在人工智能时代具有独特优势。人工智能技术与应用门槛高,领先国家将获得经济增长的先发优势。到2030年,人工智能可推动中国GDP增长26.1%、北美GDP增长14.5%,南欧、亚洲发达地区、北欧居后,分别为11.5%、10.4%、9.9%,非洲等发展中国家及拉美地区仅为5.6%和5.4%。
中国短期增速或低于美国,但十年后或呈领先趋势。原因有三:其一,中国国内生产总值大部分来自制造业,人工智能技术发挥的潜力更大,但人工智能与制造业的结合还需要一段时间;其二,与美欧相比,中国市场再投资率更高,企业利润能够支持深化人工智能开发;其三,人工智能促进经济转由消费者驱动,推动价值链上游转向更复杂、更高科技驱动的制造业和商业。[9]
(二)有效人才供给不足是多国普遍面临的难题。据普华永道测算[10],未来20年内人工智能在中国或创造9000万个新增岗位,集中在服务业、建筑业等行业,而农业或出现约2200万个净流失岗位。发达国家劳动力失衡颇为明显。波士顿咨询公司《人工智能时代下的未来工作》调查显示[11],到2030年,美国在计算机和数学等关键行业的人才短缺高达610万人,建筑和工程人员短缺达130万人,白领工作将出现300万剩余岗位;德国计算机和数学人才短缺预计为110万人,而澳大利亚人才缺口为33.3万人。公共政策应照顾行业替换潮对经济的负面影响。波士顿咨询公司同时认为,失去或新增就业数是一个过于简单化的指标。消除1000万就业机会的同时要满足1000万新增就业需求,对于经济发展和社会政策是一个重大挑战。
表1:按行业预计由人工智能取代/新增的中国岗位(2017-2037)
来源:普华永道《人工智能和相关技术对中国就业的净影响》
八、 人工智能与未来十年的国际关系
近年来,以人工智能为代表的新技术正引领第四次科技革命创新,推动着人类社会进入智能时代。(1)毫无疑问,它不仅会以超乎我们想象的程度再次塑造人类生活的方方面面,而且会极大改变我们对于社会科学的认识。在全球化时代,深入考察人工智能这一新技术对于未来十年国际关系的影响,无疑意义重大。
一、人工智能的内涵与特征
(一)人工智能的内涵
人工智能源于人类的梦想,诞生于计算机学科。1651年,霍布斯在其著作《利维坦》一书中,就设想制造出一种“人造的动物”。也正因此,科技史学家乔治·戴森(George Dyson)称其为人工智能的始祖。(2)1950年,英国数学家、计算机科学之父阿兰·M.图灵(Alan M.Turing)首次提出“机器是否可以思考”的问题,开创了人工智能研究的先河。(3)经过数十年的发展,人工智能已经成为一门以计算机科学为核心,涵盖机器人制造、统计学、物理学、数学、生物学、哲学与社会科学等诸多学科的新型交叉学科。当前,尽管它已经成为一门显学,但在技术层面如何界定仍存在诸多争论。这里仅从社会科学的视角出发,认同一般性定义,即人工智能是研究开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,英文中的Artificial Intelligence和Machine Intelligence被统称为人工智能。(4)
人工智能有三个发展阶段。其一,弱人工智能(Artificial Narrow Intelligence)阶段,此时计算机只能在某些特定的工作领域超越人类智能;其二,强人工智能(Artificial General Intelligence)阶段,此时计算机和人类智能一样能够通过学习或推理来广泛解决问题;其三,超人工智能(Artificial Super Intelligence)阶段,此时计算机实现了对人类智能的全面超越,拥有“完美的记忆力和无限的分析能力”。(5)当前,尚处于弱人工智能阶段,根据谷歌工程总监、未来学家雷·库茨韦尔(Ray Kurzweil)的估计,2029年,人工智能就可以实现与人类智商并驾齐驱,2045年,它则能够达到超越人类智能的“奇点”(singularity)。(6)鉴于现实,本文对人工智能与国际关系相关问题的探讨都限于十年内的弱人工智能时代。
人工智能的基本功能大致可以分为四类:感知(Perception),即通过搜集和解读信息来感觉和描述世界,例如,语言、图像和声音识别;预测(Prediction),即通过推理来预知特定群体的行为与结果,例如,为设计精准定向广告而专门分析特定消费者群体偏好的技术;决策(Prescription),即为帮助实现目标而提供方案,例如,路径规划、药物开发和动态定价等;提供集成解决方案(Integrated Solutions),即人工智能与其他技术相结合,发挥彼此特长综合解决问题,例如,无人驾驶就是人工智能和汽车、飞机与轮船制造技术等相结合的产物。(7)
(二)人工智能的特征
尽管“人工智能”一词于1956年首次提出,但其真正引起广泛关注却是最近几年的事,主要原因在于,之前的研究受到了计算机运算速度低下、智能算法(8)落后和数据不足的困扰。2006年左右,随着互联网的广泛普及、大数据的积累、云计算技术的成熟、计算机芯片的不断升级和机器学习(machine learning)的持续进步,人工智能终于迎来新一轮突破。(9)整体而言,现阶段的人工智能有着以下特征:
超强的学习与进化能力。机器学习是当前人工智能的核心,以往的人工智能难以达到人类预期,关键在于智能算法不足以满足机器学习的需要,这个局面直到2006年深度学习的出现才得以改变。深度学习是机器学习的一个分支,其要旨是模拟人脑的神经网络结构,建构多层次的人工神经网络,然后以此为基础,通过对海量数据的分析发现规律,揭示数据内在的关系,进而达到最优化解决问题的目标。(10)比如,2016年3月,以4∶1击败世界围棋冠军韩国棋手李世石的阿尔法狗版本(AlphaGo Lee)就利用了数百万人类围棋专家的棋谱,用几个月时间进行了3000万盘的自我练习。但是,阿尔法狗的进化并未止步,深度学习也不是机器学习的终结。2017年1月,阿尔法狗第一次进化版阿尔法大师(AlphaGo Master)以60∶0的战绩横扫包括世界第一围棋手柯洁在内的中日韩顶尖棋手团队。2017年10月,再次进化版的阿尔法元(AlphaGo Zero)在用三天进行了490万盘的练习之后,以100∶0的战绩成功战胜曾击败李世石的阿尔法狗版本。然后,经过40天的自我对弈,阿尔法元又击败了阿尔法大师。更为重要的是,阿尔法元的学习不以任何人类经验为基础,无须额外导入大数据,它对围棋的认识从一张白纸出发,按照人类设定的围棋基本规则,借助一张单一的神经网络和一个强力搜索算法,就完成了史无前例的再进化。(11)相对而言,1997年击败国际象棋大师卡斯帕罗夫的“深蓝”所依靠的只是快速的运算能力,无法做到自我学习,因此不属于人工智能范畴。
强大的任务处理能力。相对于人类智能而言,人工智能具有三个优势。首先,它有着快速的数据处理和反应能力。互联网的爆发推动了大数据的发展。早在2013年,人类每天就约生产2.5艾字节的数据量。(12)目前,世界数据正呈现出指数增长势头,预计每年增长40%。(13)对这些数据的分析检索,人力无法企及,只有依靠人工智能。其次,它不受心理、体力等主观条件的限制,也不受时间和空间的局限。这就意味着相对于人类而言,它可以高效地排除多种负面因素的干扰,提升分析可信度、决策质量和行动执行力。最后,它可以尽最大可能避免人类组织体系中由于忠诚度问题而引起的低效现象。全球人口的大规模流动是当今世界的常见现象,企业的发展也常常受到员工离职或者被挖角的困扰。人工智能则对使用者绝对忠诚,不用担心其因故迁徙或者因对手的诱惑而背叛,能够从事长期、重要甚至秘密的工作。(14)
广阔的社会应用前景。近几年,人工智能的研发已经走出象牙塔,展现出了强大的社会应用价值。这方面最为经典的例子就是,智能手机使用率的提升,甚至还在挤压电脑的生存空间。事实上,人工智能在图像识别、语音合成、语言翻译、教育培训、金融会计、医药法律和自动驾驶等诸多领域同样拥有着重要市场价值。预计到2025年,全球企业对人工智能的采用率将达到86%。(15)
二、人工智能对世界经济发展的影响
科学技术是第一生产力。人工智能对于国际关系的影响,首先在于它会对未来十年的世界经济发展产生重大影响。
(一)人工智能对全球经济增长的影响
人工智能将会成为全球经济增长的新支点。与蒸汽机、电力和互联网一样,人工智能同样会渗透进人类经济活动生产、分配、交换和消费等环节的每一个领域,于微观层面改变人类日常生活的同时,在宏观层面也成为全球经济发展的新发动机。目前,它能够以三种方式推动经济发展。首先,通过智能自动化为经济发展提供一种新的虚拟劳动力,自动驾驶汽车就是其中的代表。其次,使既有的劳动力和资本运转得更为有效。据估计,智能技术未来有可能会使律师的效率提升500倍,使诉讼成本下降99%。(16)第三,在不同行业中的技术扩散所带来的规模经济效应。人工智能的一个优势在于它能够整合其他行业,尤其是传统工业部门的技术与设备,使其功能、成本和利润进一步优化。
咨询公司普华永道预测,人工智能会使全球经济在2030年增长至少14%,约15.7万亿美元,这比当前中印两国GDP的总和还要多。(17)企业界已经从中看到了机遇,他们对人工智能产业的投入正呈现出爆炸式增长的势头。其中,人工智能芯片主要制造商英伟达(Nvidia)的股票价格于2014-2017年间增长了逾700%。
然而,人工智能给世界带来的绝对经济收益并不能掩盖人类相对获益差距较大甚至会继续扩大的现实,它极有可能产生的结果是“我们的社会可能会变得很富有,但是大多数人却没有过得更好”(18)。
首先,区域和行业收益程度的差异。普华永道认为,在区域方面,到2030年,由于人口、制度、资金和技术等方面的原因,人工智能会使中国和北美地区的经济获益最大,分别占其届时GDP的26.4%(7万亿美元)和14.5%(3.7万亿美元),非洲、大洋洲与亚洲不发达地区(5.6%,1.2万亿美元)和拉美地区(5.4%,0.5万亿美元)则获益较小;在行业方面,金融服务业、零售业和医疗健康产业会受益最大。(19)值得注意的是,在这一过程中,和人工智能相关的互联网技术制造商也将会摆脱以往的技术辅助角色,真正成为市场的塑造者。(20)
其次,人群受益的差异。在一个逐利的全球市场体系中,拥有资本的富人会因为人工智能的普及而成为最大获益者,而那些仅拥有可以被人工智能替代的劳动力的穷人则只会被更加边缘化。善于利用新技术的华尔街金融资本家是获利的典型代表,人工智能首先更加方便了他们操纵国内外金融市场。目前,智能股票买卖系统高频交易占美国股市日常交易的50%,其特长是能够迅速分析市场行情,利用低价买进高价卖出的策略收割中间利润,速度可以几乎达到于0.1秒的时间内完成差不多10万笔交易。(21)可以说,在人工智能推动下,全球金融市场动荡的可能性会进一步增强,诸多国家被国际金融寡头劫掠的风险会提高到前所未有的程度。
人工智能的普及会大大提高一些劳动密集型产业的员工失业的概率,甚至一些高度需要人类智慧的职业,例如医生、律师和教师等,也会遭遇部分失业的危险。需要强调的是,人工智能带来的失业问题连发达国家也无法做到置身事外。麦肯锡全球研究院认为,基于目前的人工智能发展程度,全球46个国家中有49%的带薪工作岗位存在不同程度自动化的潜力。在美国,住宿与餐饮业、制造业、农业、交通运输与仓储业和零售业这五个最具自动化潜力行业的相关数据分别为73%、60%、58%、57%和53%。(22)
(二)人工智能对全球经济发展的挑战
一些以劳动密集型产业为主的发展中国家有可能会面临灭顶之灾,而以往的那种依靠劳动力比较优势来发展经济的思路也会终结。对于采取类似美国总统特朗普那样强迫制造业回流以增加国内就业的人而言,人工智能的发展意味着这种措施只会失败,因为政府虽可以用行政手段逼迫跨国公司增加在本国的投资,却无法阻止它们使自己的企业走向自动化。与此同时,如何防范金融投机风险将会成为所有国家面临的难题。
表面上来看,人工智能带来的这些挑战是技术引起的,但就根本而言,它们仍然由不公正的全球资本主义体系造成。人工智能非但不能改变资本主义的基本矛盾,反而会加剧生产社会化与生产资料私人占有之间的矛盾,让穷者的消费力永远赶不上富者的产品生产速度。曾经有人希望利用人工智能从根本上解决全球贫困问题,而实际上,早在2010年,在饥饿和营养不良夺走约100万人生命的同时,肥胖却让300万人失去生命。(23)
按照资本主义经济危机发生的规律,从2017年全球经济复苏开始,经过约十年时间,到2027年左右,全球有很大可能会再次发生大规模经济危机,而且破坏性将会更大。此次危机一旦发生,与以往不同的地方在于:首先,金融寡头在人工智能的支持下会更加猖狂,诸多国家好不容易取得的经济建设成果极有可能再次被他们窃取,国家将深陷发展困境。其次,资本主义生产相对过剩造成的失业与人工智能普及所造成的失业相叠加,造成更大规模失业潮,更为严重的贫富分化则会助推其在全球范围内再次引爆社会危机,推动新一轮逆全球化运动兴起。再次,此次危机正好处于中国经济赶超美国的重要节点,也是世界经济格局再次大调整的重要节点。中国社会科学院预测中国经济在总量上追上美国大约要到2034年左右,(24)在这一过程中当然也存在着诸多不确定因素,人工智能这个新技术和新一轮全球经济危机的影响都在其中。由于中美两国在技术层面享受人工智能所带来的机遇和挑战基本相同,因此谁能够在经济制度层面利用好人工智能的发展潜力,并消除其风险隐患,谁就能够优先化解经济危机带来的负面影响,在竞争中笑到最后。由于美国已经视中国为战略竞争对手,因此在未来十年中,它必定会采取各种手段阻止中国的崛起。其中,在人工智能领域抢占制高点并伺机对中国发动金融战必定会在优先考虑的手段之列。对于中国而言,社会主义经济制度追求公平的内在特性可以让中国更有效地处理经济危机和失业问题,但能否有效地实现体制创新,充分享受人工智能所带来的技术红利并应对好国际投机资本的掠夺,却是一个巨大挑战。另外,过多资本对人工智能的盲目跟风和过热投资也值得注意,它极有可能会助推更大的经济泡沫肆虐全球,以往的互联网泡沫就是教训。(25)
三、人工智能对全球武装冲突的影响
人工智能会成为人类军事变革史上又一座新的里程碑,它在推动现代战争进入智能化时代、让各国掀起新一轮军备竞赛的同时,虽然暂时不能让全球军事力量对比产生根本变化,但也会在短期内加剧世界范围的武装冲突与战争,恐怖袭击与核扩散的风险同样会进一步加大。
(一)人工智能在战争进程中的作用
人工智能将会极大改变传统战争的面貌,智能化会成为现代战争的发展方向。战争过程中,在情报分析、决策控制和武器系统这三大主要领域,人工智能都将得到充分应用。(26)
在情报分析领域,人工智能的优势在于它能够迅速处理海量数据,帮助指挥员更为快捷准确地搜集战场信息、把握敌我战场态势。美国国家地理空间情报局已经提出了利用深度学习来对重复耗时的图像分析任务进行自动化处理的构想。(27)
在决策控制领域,人工智能有助于使指挥员从纷繁复杂的决策细节中解脱出来,专注主要决策,提升决策的科学性。它改变了以往的作战指挥主要依赖指挥员的经验、直觉和战前计划等传统,能够辅助指挥员随机应变,设计多种兵力部署和作战实施方案,然后选择最合适的部队于最恰当的时间、最优的地点以最高的效率完成作战任务。在这一过程中,人工智能的优势不仅在于它的速度和自我纠错能力,还在于它能够克服人类在面对压力时的种种心理局限,以纯理性方式权衡得失,并且它能够打破人类常规思维的限制,创造性地提出新思路帮助指挥员来拓宽视野。(28)在美国空军装备司令部发布的《2016年战略规划》中,研究人工智能用于高层指挥决策就被当作一项重要内容提出。(29)
在武器系统领域,人工智能所带来的最大改变是智能武器的使用。其实在智能武器之前,就已经出现了无人侦察和攻击飞机,只是它们依然由人远距离实施操控。智能武器的差别在于,它一旦启动,就可以在无人干预的情况下自主搜索目标,进行威胁评估,确定并摧毁打击对象,再最终完成效果评估。(30)其优势在于:首先,速度和准确率大为提高。传统无人攻击系统在打击目标时,依赖于情报人员的主观判断,因此随意性较强,也有一定滞后性,甚至免不了让平民受到无辜牵连。比如,美国情报人员和军队在通过SIM卡等定位方式发现疑点时,就直接给无人机下达攻击指令,而不会去确定疑点身份,也不考虑其周围是否有平民。其直接后果就是,美军的每次相关打击,都会平均致死28名无辜人员。(31)与之形成对比的是,2017年,联合国展示的一段视频显示,智能武器可以在无人监督的情况下,通过人脸识别系统迅速锁定目标,瞬间杀人。(32)其次,可以突破人类身体机能的限制,拓展传统军队的活动空间与时间,代替人类执行危险和自杀性任务。运输机器人、战斗机器人和排雷机器人就是其中的代表。再次,将多个智能机器人进行有效组合,形成蜂群,可以将智能系统的整体效能最大化,进而在战场上相对敌手形成在规模、协调与速度等方面的绝对优势。(33)目前,美国国防高级研究计划局正计划打造一支在小部队的指挥下,由至少250个机器人组成的可以在复杂城市环境下执行多样任务的蜂群。(34)
展望未来,随着人工智能与纳米技术、生物技术、新材料技术和量子技术等其他前沿科技的进一步创新、融合及其在军事领域的广泛应用,战争的各个环节都会发生重大变化,战争的基本面貌、过程、机理乃至作战指导思想也会发生颠覆性变化。可以这样说,人工智能领域取得优势的国家,在战争中能够获得更多先机。但是,人工智能在军事领域暂时仍不能完全代替人类。因为它只有在完全信息博弈的环境中,按照给定的规则行事才能发挥出相较于人力的优势,围棋博弈就是类似代表。但是,战争恰恰是在不完全的信息环境中展开的,作战的双方往往只能知己,并不确定能否把握对方的所有信息,而且战争的规则也不确定,甚至可以说毫无规则可言。因此,在人工智能时代,实行人机协同,把二者的优势相结合将会是赢得战争的基本保证。
需要强调的是,在智能战争时代,智能与反智能的斗争将会非常激烈。例如,美国虽然有强大的网络进攻能力,但同样也研发了针对网络入侵的智能诊断信息系统,它能够自动诊断网络入侵来源,评估己方网络受损程度并进行数据恢复。(35)事实上,围绕人工智能在军事领域的应用,各国已经掀起了新一轮军备竞赛的步伐,今后这种竞争只会更加激烈。军事上,人工智能应用较好的强国固然能够在与对手的战争中获得更多优势,但是如果后者能够在人工智能的某些领域获得局部优势,利用不对称战争,仍然有可能会给前者造成物质与心理的重创。
(二)人工智能与世界战争面貌的变化
人工智能的发展,无疑会刺激美欧强国发动战争的意愿。冷战结束以来,制约它们发动战争的最大因素是巨大的人员伤亡数目和高昂的战争物质成本。然而,人工智能的出现,有助于大幅提升具体战斗获胜的概率,降低物质损失程度尤其是战斗人员的伤亡数字。在面对亚非拉等技术落后的中小国家时,这种优势会更加突出。根据以往的经验,在国内发生重大危机的时候,发动嫁祸于人的战争是资本主义强国的惯用手段,用暴力手段推广西方价值观和自由市场经济制度以及打击恐怖主义也是它们的一贯偏好。人工智能的发展,无疑为它们提供了发动战争的有力工具。再加上十年后,世界可能面临更为严重的经济危机,欧美强国发动战争的意愿只会更加强烈。与此同时,当弱小国家的政权无力与列强进行对抗而被打压或者消灭时,恐怖主义也会借机获得更多滋生的土壤。虽然在正面战场上,他们无力与正规军队进行决战,但是随着人工智能的普及,他们利用非对称手段成功发动恐怖袭击的可能性却在增加。自互联网诞生以来,虽然网络监管技术不断升级,但未能有效阻止恐怖主义借助网络四处泛滥,人工智能自然也不能从根本上消灭恐怖主义,相反它同网络一样会为恐怖分子所用,在世界制造新的恐慌。可以预期,恐怖分子利用无差别杀人机器人袭击所造成的伤亡数字与美国普通的持枪袭击事件相比,绝不会在一个数量级上。其结果就是,一些大国发动战争的强烈意愿和恐怖分子发动袭击的坚定意志遥相呼应,世界陷入新一轮局部战争和冲突的风险会进一步加大,诸多国家内部面临恐怖袭击风险与损失的可能性也会进一步提升。
人工智能暂时无法改变世界军事力量对比的基本格局。核武器及其载体的数量与质量仍然是影响当今大国军事实力的决定性变量。核武器载体的智能化对核武器质量的提升,尚不足以达到根本改变全球核威慑态势的程度,也没有改变核武器作为一种最后使用的报复工具这一功能。“威慑本质上是一个在实力基础上进行心理较量的过程。”(36)就过程而言,在两个敌对拥核国家中,人工智能上占据优势的一方无疑会在情报搜集、分析和心理博弈上获得优势。但是,一旦试图将核武器投入实战,那么人工智能仍然存在难以克服的短板。虽然通过这一技术,主动发起核攻击的一方在对目标的精确打击和时间的选择上会占据优势,但其优势相对有限。由于核武器本身就是大规模杀伤性武器,因此它对精确性的要求并不很高,0.001米的精度与1000米的精度没有本质差别,这就意味着进攻者的核杀伤优势并不明显;现代导弹防御系统已经将针对攻击核武器的预警时间缩短为秒级,这等于说只要一方发射核武器,对手仍然有可能在极短时内做出反应,在拦截的同时予以报复。即使拦截和报复都失败,核武器的特殊毁灭效果仍然会使试图攻击者心存忌惮——只要对手采取核捆绑与核扩散战略,世界仍然免不了被毁灭的危险。就算这两种手段失效,大规模核战争所引发的负面环境效应仍然非地球所能承受,核冬天依然会造成人类的自我毁灭。在这种情况下,不仅是核大国之间发动大规模核战争的可能性依旧几乎为零,就连核大国在对核小国进行讹诈时也还是要心存忌惮,防止对手不理性的行为给自己带来灾难性后果。就是在有核国家对无核国家使用战术核武器的考量中,人工智能也不能让试图攻击者毫无顾忌,来自其他有核国家的多重博弈和国际法、国际规则和国际道德等因素仍会限制战术核武器的使用。甚至可以这样说,人工智能的使用强化了核武器在国家生存中的作用,弱小国家和恐怖分子借核武器进行不对称报复的动机会更加强烈,国际核扩散的风险自然也进一步加大。此外,在核恐怖平衡的维系下,国际体系的无政府状态也将持续。
四、人工智能对国际政治互动的影响
人工智能的诞生与普及,正在让人类进入智能政治时代。这种智能政治是传统网络政治的升级版,它们之间的差别在于,在智能政治时代,网络的操作主体是智能算法程序机器,利用的核心对象是大数据,而在传统网络政治时代,网络的操作主体则是人,利用的核心对象则是相对有限的可接触信息。这对于国际政治互动的影响同样广泛而深刻。
(一)人工智能在政府运转与国家外交活动中的作用
人工智能对于政府效能提升的意义不言而喻。首先,人工智能对于国家整体运转情况大数据的实时跟踪和分析,有助于政府更为精准地把握国家社会生活的各方面问题,提升决策科学性。其次,人工智能能够帮助政府更为有效地设计工作流程,优化工作程序,能够代替人力从事简单重复但又耗费时间的资料搜集、文本写作、公众咨询与公共建设等方面的工作,减少不必要的资源浪费、人员冗余和腐败问题,提升决策执行力。再次,人工智能可以帮助政府针对不同公民的需要提供个性化的服务措施,使政府与民众之间的关系更为融洽,提升政府形象,也有助于公民更好地参与国家政治事务。(37)
人工智能在提升政府效能方面的作用也同样适用于外交领域。例如,传统外交谈判往往费时费力,但是如果将人工智能引入谈判过程,很多事情就会变得简单。在一场双边或者多边谈判中,智能机器能够克服语言障碍,同步利用可接触的各种数据,节约各方代表冗长的发言时间和博弈过程,与对方的智能机器一道提出一系列可供接受的方案供双方做出决定,其时间和成本相较于外交官之间的面谈可谓微不足道。不仅如此,智能机器还能够尽最大可能避免人的工作失误和自我偏见,能够为有心于合作的各方提供最大可能的共赢方案。(38)
(二)人工智能对国际权力角逐的影响
首先,大数据将成为国家权力的战略资源之一,智能鸿沟将成为国际政治不平等的新来源。
《经济学人》认为,如果说过去国家最重要的资源是石油,那么现在无疑是数据。(39)这不仅仅是因为通过这些海量数据能够扶植起一大批新兴科技企业,引领世界经济发展和军事变革的潮流。更为重要的是,它们蕴含着影响国计民生的核心信息,是记录着国家社会生活面貌的真实档案,也是国家制定大政方针的重要依据,一旦为对手所掌握,后果将不堪设想。
不仅如此,计算机芯片、智能算法和大数据是人工智能的核心,其发展需要投入大量人力、物力,再加上计算机芯片和智能算法能够以超快速度升级的技术特征,人工智能还极有可能造成赢者通吃局面的出现,技术落后者不仅会在科技、经济与军事层面,也会在政治和文化上付出沉重代价,国际地缘政治的版图同样会因此而改变。(40)法国总统马克龙特别重视人工智能在维护主权、保障普世价值中的作用,认为它有可能改变国家的民主进程。(41)可以预期,借助智能网络,西方国家会对广大发展中国家开展新一轮政治、文化与价值观攻势,后者在维护自身主权独立、政治稳定和民族特性的问题上也将会面临更为艰巨的挑战。
其次,国家权力的权威性会受到进一步侵蚀,被金融资本绑架的风险进一步提高。
一方面,大型人工智能科技公司、非政府组织和个人对政府权力的挑战在加大。互联网本身就在不断削弱政府对社会信息的控制力,并且让政府置于更多的社会监督中,人工智能则强化了这个趋势。在本轮人工智能发展大潮中,谷歌、脸书、微软和亚马逊等大型跨国公司无论是在技术研发还是在对数据资源的掌控利用上都走在了政府前面。与此同时,政府凭自身的力量不足以应对人工智能发展的步伐,典型的例子就是,“美国国安局或许能够监控每个人说的每句话,但看到美国外交纰漏不断,就知道华盛顿虽拥有所有数据,却没人知道该怎么运用”(42)。这样,这些人工智能巨头凭借自身在全球范围内的技术和资源优势就获得了相对于以往更多的权力,它们干预国家事务和国际政治的能力随之提高。甚至,行事低调的“剑桥分析”公司都被认为是利用大数据干涉英国脱欧和2016年美国大选的重要推手。(43)此外,借助人工智能和其他技术相整合的超强能力,非国家行为体能够更多监督国家的内政外交事务,更多突破国家的网络封锁进行跨国联系、自由表达,公民对国家的忠诚度也会进一步削弱。
另一方面,金融资本绑架国家权力的意愿大幅增强。目前的国际体系其实就是以金融资本为主导的国际资本主义体系,金融资本家通常是国家政权的重要控制者。面对人工智能带来的高额利润诱惑,以华尔街为代表的金融大鳄会更加有动力通过国家的力量来让它为自己的利益服务。在美国,就曾经出现过最大的铁路建设项目让位于耗资巨大的光纤隧道项目的案例,原因在于建设这条光纤可以减少芝加哥期货市场和纽约证券交易所三毫秒的通信时间,方便金融资本家利用时间差进行投机交易,攫取利润。(44)如果国家再不能对此有效应对,付出的就不仅仅是产业结构失衡、实体经济萎缩和国际经济竞争力削弱的代价,甚至国家权力分配格局和政治结构都会面临遭遇根本颠覆的危险。
再次,智能安全成为国际安全的新领域,智能治理也会成为国际治理的新疆域。
人工智能同样会给国际社会带来新的公共安全风险。一是人工智能存在着被黑客攻破和干扰的风险。比如,在2017年的“极棒”(GeekPwn)国际安全极客大赛上,人脸识别,声纹、指纹与虹膜认证,甚至签名笔迹都被破解。(45)二是出于对利润的追逐,人工智能可能被用于非法目的。脸书首席执行官马克·扎克伯格(Mark Zuckerberg)就曾因为用户信息泄露问题不得不亲赴美国国会和欧洲议会接受质询,也遭到英国国会的传唤威胁。(46)三是人工智能自身可能存在的技术缺陷,或者其他外在客观不确定因素,让它在应用时造成难以理解和无法弥补的损失。就内部因素而言,人工智能的技术问题既有可能是软件漏洞,也有可能是硬件故障,还有可能是软硬件突然出现不兼容等。就外在因素而言,人工智能相互之间可能会配合很好,但它在与人类合作时,极有可能会出现因为人类自身的失误导致双方协调失灵的情况。(47)2016年3月,微软就出现过新研发的智能聊天机器人Tay于24小时内就在与人的聊天过程中被“教坏”,出现满口脏话和种族歧视的情况。(48)
在这种情况下,有关人工智能的国际治理问题自然而然要提上议事日程。到目前为止,相关研究和表述主要集中于人工智能使用的原则与伦理,而相应的国际规则和法律尚处于待定状态。2018年3月,G7成员国在加拿大蒙特利尔市只是就人工智能的发展提出了一份“共同愿景”,并无具体方案。(49)但可以预期的是,随着人工智能的快速大规模应用,其治理问题必定会在未来几年内成为热点,相关问题上的国际博弈也会异常激烈。
(三)人工智能在宣传战中的作用
宣传机器人能够伪装成人类,通过使政治参与自动化来影响公众舆论。相对于人类,其优势在于:首先,成本更低。宣传机器人能够以非常低的成本同时操纵数以万计甚至百万计的用户账户,在推特上就有大约4800万(15%)的账户为机器人控制。其次,时效性更强。它能够对网上的特定事件进行实时跟踪,然后几乎同步做出反应,创作出相关内容,并有计划地大量散布,进而在第一时间塑造舆论场。这在信息时代尤为重要,因为人们往往只能想起与事件相关的第一条叙述,即便它是错误的。当然,对于不利于己方的信息,它也能够做到同步刷屏、舆论围攻和制造杂音,将其负面影响降到最低。目前,社交媒体网站逾10%的内容和62%的流量,都由机器人产生。再次,更具针对性。它能够通过跟踪用户经常使用的网站和关注的内容,在线分析出用户的性格、政治偏好、宗教信仰与兴趣爱好等个人数据,动态创建和发送专门符合其特定心理特征的内容,潜移默化地诱导他们支持自己想要的政策目标。(50)
宣传机器人的这些优势在外交公关与干涉中能够发挥重要作用。2018年3月,布鲁金斯学会发布的一份研究报告认为,俄罗斯就利用人工智能干涉了2016-2017年间美国、法国和德国三个国家的大选,它们与其他相关活动一起,旨在破坏西方民主制度,在西方国家内部挑拨离间,削弱跨大西洋共识。例如,在2016年美国大选期间,俄罗斯在脸书的相关账户上就美国的敏感社会问题,如种族、移民、宗教和性别歧视,散布了大量信息。这些账户以精确定位的方式,借助脸书和其他社交软件既有的广告工具插件,被持有类似观点的用户所接收。其成本极为低廉,俄罗斯仅花了10万美元就让脸书和Instagram上的1.5亿用户收到了信息,其目的就是借这些热点问题诱发西方的社会分裂。(51)可以这样说,随着人工智能的进一步成熟,它将在未来的外交舆论公关和外交干涉中起到更为显眼的作用。
在宣传战当中,西方国家会凭借自身的技术优势更加肆无忌惮地对弱小国家发动各种舆论攻势。虽然美国在不断强调俄罗斯干预西方国家大选,但是“棱镜”计划却暴露了美国政府对自己的盟友都进行监听的行为。以往,发达国家对其他国家进行网络渗透的主要手段是雇佣网络水军、控制当地网络传播企业和培养代言人等,但是借助人工智能的技术优势,它们完全可以运用新型网络智能机器人以更低成本和更高效率达成扰乱对方舆论、制造社会混乱与分裂的目标。对此,技术落后的弱国几乎无法应对,除非彻底隔断本国网络与外界的联系。