必备知识:关于曲线的一、二、三阶导的总结

本文总结了曲线的一、二、三阶导数及其在光条中心线提取中的作用。一阶导数指示函数增减性,二阶导数判断函数凹凸性,三阶导数用于寻找拐点。通过一阶和二阶导数可以确定函数的极值点,这对于解决激光光条的中心线提取问题至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在做光条中心线提取方面的工作,由于激光光条符合高斯模型,高斯模型又是一个近似抛物线的二维曲线。在求解光条中心的过程中要求解曲线的极值之类的问题,与曲线的导数相关,所以总结一下相关的内容。
一阶导数可以用来描述原函数的增减性。区间内,一阶导数大于零,单增,一阶导数小于零,单减。
二阶导数可以用来判断函数在一段区间上的凹凸性,二阶导大于零,是凹的,小于零是凸的。
三阶导数一般不用,可以用来找函数的拐点,拐点的意思是如果曲线f(x)在经过点(x0,f(x0))时,曲线的凹凸性改变了,那么就称这个点为曲线的拐点。若f(x)在x0的某邻域内具有三阶连续导数,f’’(x0)=0,f’’’(x0)≠0,那么(x0,f(x0))是f(x)的一个拐点。

二阶导数的性质:
(1)如果一个函数f(x)在某个区间I上有f’’(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:
f(x)+f(y)≥2f[(x+y)/2],如果总有f’’(x)<0成立,那么上式的不等号反向。
几何的直观解释:如果一个函数f(x)在某个区间I上有f’’(x)ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一叶孤舟渡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值