最近在做光条中心线提取方面的工作,由于激光光条符合高斯模型,高斯模型又是一个近似抛物线的二维曲线。在求解光条中心的过程中要求解曲线的极值之类的问题,与曲线的导数相关,所以总结一下相关的内容。
一阶导数可以用来描述原函数的增减性。区间内,一阶导数大于零,单增,一阶导数小于零,单减。
二阶导数可以用来判断函数在一段区间上的凹凸性,二阶导大于零,是凹的,小于零是凸的。
三阶导数一般不用,可以用来找函数的拐点,拐点的意思是如果曲线f(x)在经过点(x0,f(x0))时,曲线的凹凸性改变了,那么就称这个点为曲线的拐点。若f(x)在x0的某邻域内具有三阶连续导数,f’’(x0)=0,f’’’(x0)≠0,那么(x0,f(x0))是f(x)的一个拐点。
二阶导数的性质:
(1)如果一个函数f(x)在某个区间I上有f’’(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:
f(x)+f(y)≥2f[(x+y)/2],如果总有f’’(x)<0成立,那么上式的不等号反向。
几何的直观解释:如果一个函数f(x)在某个区间I上有f’’(x)ÿ