一个导纳控制算法与MoveIt 的控制接口相结合的python程序

要实现一个基于导纳控制的Python程序并与MoveIt的控制接口相结合,可以参考以下代码示例。首先,确保已安装ROS和MoveIt,并设置好Panda机器人的相关配置。

导纳控制是一种与阻抗控制类似的交互控制策略,但其目标是控制力,而不是位置。以下是一个简单的示例,需要根据实际的力传感器和机器人环境来调整代码。
#!/usr/bin/env python

import rospy
import moveit_commander
import numpy as np
from geometry_msgs.msg import WrenchStamped
from moveit_commander.conversions import pose_to_list

# Force sensor callback function
def force_callback(msg):
    global force_data
    force_data = np.array([msg.wrench.force.x, msg.wrench.force.y, msg.wrench.force.z])

# Initialize ROS node
rospy.init_node('admittance_control_moveit', anonymous=True)

# Initialize MoveIt
moveit_commander.roscpp_initialize(sys.argv)
robot = moveit_commander.RobotCommander()
scene = moveit_commander.PlanningSceneInterface()
group = moveit_commander.MoveGroupCommander("panda_arm")

# Subscribe to force sensor data
force_data = np.zeros(3)
rospy.Subscriber("/force_sensor_topic", WrenchStamped, force_callback)

# Admittance control parameters
M = np.diag([1.0, 1.0, 1.0])  # Mass matrix
D = np.diag([150.0, 150.0, 150.0])  # Damping matrix
K = np.diag([1000.0, 1000.0, 1000.0])  # Stiffness matrix

# Desired force
F_desired = np.zeros(3)

# Control loop rate
rate = rospy.Rate(100)  # 100 Hz

# Admittance control loop
while not rospy.is_shutdown():
    # Calculate force error
    F_error = F_desired - force_data

    # Admittance control law
    acceleration = np.linalg.inv(M) @ (F_error - D @ F_error - K @ F_error)
    velocity = np.zeros(3)
    position = np.zeros(3)

    # Update position, velocity, and acceleration
    position += velocity / 100
    velocity += acceleration / 100

    # Get current end-effector pose
    current_pose = group.get_current_pose().pose
    current_pose_list = pose_to_list(current_pose)

    # Update end-effector pose based on the calculated position
    current_pose_list[0] += position[0]
    current_pose_list[1] += position[1]
    current_pose_list[2] += position[2]

    # Set the updated pose as the new target
    group.set_pose_target(current_pose_list)

    # Plan and execute the motion
    plan = group.plan()
    group.execute(plan)

    # Sleep for the control loop rate
    rate.sleep()

这个示例代码首先订阅力传感器数据,然后实现一个简单的导纳控制算法,并使用MoveIt的控制接口来规划和执行Panda机器人的动作。请注意,这个示例代码需要根据实际的力传感器和机器人环境进行调整。特别是关于导纳控制参数(质量矩阵M、阻尼矩阵D和刚度矩阵K)和力传感器话题名称(“/force_sensor_topic”)可能需要根据实际情况进行调整。

为了在实际系统中应用这个示例代码,您需要遵循以下步骤:

  1. 根据您的力传感器,替换/force_sensor_topic为实际的传感器话题名称。

  2. 根据实际情况调整导纳控制参数(M,D,K)以满足系统性能要求。

  3. 如果您的机器人系统要求更高的控制频率,可以调整rate = rospy.Rate(100)中的值。请注意,高频率可能会影响规划和执行的性能。

  4. 在启动代码之前,确保已经启动了机器人硬件和MoveIt的相关节点,例如roslaunch panda_moveit_config demo.launch。

  5. 运行示例代码。在运行代码时,请务必遵守所有安全准则,确保在测试环境中没有其他物体或人员。

这个示例代码提供了一个基本的导纳控制算法实现和MoveIt的控制接口集成。然而,在实际应用中,您可能需要对算法进行更多的优化,例如根据需要调整质量、阻尼和刚度矩阵,以及考虑速度和加速度限制。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值