💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
文献来源:
摘要:
轴承故障是导致机器故障最常见的原因之一。因此,可靠且快速地进行轴承故障诊断非常重要。然而,为了进行轴承故障诊断,从重噪声背景中提取埋藏的冲击是基本但困难的。本文提出了一种新颖的自适应增强稀疏周期组Lasso(AdaESPGL)算法用于轴承故障诊断。该算法基于提出的增强稀疏组Lasso惩罚,促进了轴承故障的冲击特征在组内和组间的稀疏性。此外,周期性先验被嵌入并动态更新通过优化过程的每次迭代。此外,我们形成了一个关于如何自适应设置参数的确定性规则。与传统稀疏表示方法相比,AdaESPGL的主要优点在于无需参数(形成确定性规则)且快速(直接从时域提取冲击信息)。最后,通过一系列数值仿真和电机轴承的诊断验证了AdaESPGL的性能。结果表明,与其他最新方法相比,它在提取周期性冲击方面具有优势。
滚动轴承作为驱动电机[1]、风力涡轮机[2]和航空发动机[3]等旋转机械的关键部件,在工业应用中变得越来越重要[4]–[6]。由于结构日益复杂、精度高以及恶劣的工作环境,滚动轴承的许多局部故障可能会引发高昂的维护成本,甚至造成伤亡[7]。振动监测是轴承故障诊断的最有效和流行方法之一。然而,故障的特征信息常常被强干扰淹没,使得故障特性的提取成为一个具有挑战性的问题。因此,迫切需要快速而可靠地诊断轴承故障,特别是在轴承故障的很早期阶段。
当滚动轴承发生局部故障(例如裂纹、点蚀腐蚀以及表面缺失)时,由于滚动体与局部故障之间的接触,会产生冲击。故障滚动轴承信号的特定特征可以被建模为周期性或非严格周期性(至少对于局部故障而言)。同时,测量信号始终包含一系列冲击,这些冲击会周期性地发生(至少是具有随机滑动的准周期性)[8]。近年来,出现了大量用于提取准周期性冲击的信号处理方法。谱峰值(SK)[9]–[11]作为一种基于滤波的方法,旨在自适应地搜索适当的共振频带。最近的研究表明,峰度对于重复冲击并不十分有效,因此提出了其他指标来解决这个问题[12],[13]。类似地,基于反褶积的方法[14]也是基于滤波器,旨在找到逆滤波器以消除传输路径的影响。时频分析(TFA)[15]和小波变换(WT)[16]旨在匹配信号的局部模式,许多研究已经证明它们对于故障诊断的有效性。此外,非线性和非平稳信号处理方法,如经验模态分解[17]、局部均值分解[18]和变分模态分解[19],在故障诊断方面也得到了广泛应用。
📚2 运行结果
部分代码:
function [T] = Estimate_Period(Sig , Fn_N)
% Estimate the period of the signal
% Input:
% Sig : the input signal
% Fn_N : a vector which contains the period of each component (Fs / fc)
% Output:
% T : the estimated period
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N = length(Sig);
% hilbert
% ht = abs(hilbert(Sig));
% difference hilbert
ht = abs(hilbert([0;diff(Sig)]));
ht_corr = xcorr(ht);
y = (ht_corr(N : end));
if norm(Fn_N) ~= 0
Temp = -10 : 10;
total_interval = [];
for i = 1 : length(Fn_N)
fc_interval = Temp + Fn_N(i);
total_interval = [total_interval , fc_interval];
end
y_temp = zeros(N,1);
y_temp(total_interval) = y(total_interval);
[~ , T] = max(y_temp);
else
% the below is directly search the period, but it is not suitable to high
% noise
k = 1;
% delete the value near the r(0)
for i = 1 : N-1
if y(i+1) <= y(i)
y(i) = 0;
else
break;
end
end
% search the maximum index
y_diff = diff(y);
for i = 1 : length(y_diff)-1
if y_diff(i)>=0 && y_diff(i+1)<= 0
index(k) = i;
k = k + 1;
end
end
y_final = zeros(N,1);
y_final(index) = y(index);
[~ , T] = max(y_final);
% [~ , T] = max(y);
end
end
%% Set the random seed to make sure the reproducibility
Params.random_seed = 25; % The random state
%% Parameters of Generating Simulation
Params.Fs = 6400; % The sampling frequency of the simulation signal
Params.N = 8192; % The length of the signal
Params.Fn = 80; % The fault characteristic frequency
Params.F = 2000; % The amplitude of the impulse
Params.mixture_ratio = [1, 1.3]; % The mixing ratio of [impulses, harmonic, noise].
% noise type
Params.noise_type = 'Gaussian'; % The noise type can be 'Gaussian' or 'Laplacian'
%% Parameters of the AdaESPGL
% TQWT parameters
Params.N1 = 4; % The samples of one impulse
Params.M = 4; % The number of periods
Params.Fn_N = Params.Fs/Params.Fn; % a vector which contains the period of each component (Fs / fc)
Params.lam = 0.272*Params.mixture_ratio(2) + 0.044; % The parameter related to sparsity across groups
Params.mu = 9.235e-4; % The parameter related to sparsity within groups
Params.pen = 'atan'; % The penalty function
Params.rho = 1; % The degree of nonconvex
Params.Nit = 100; % The number of iteration
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。