SOLO:一种新的端到端实例分割方案 论文地址、 代码地址
1.SOLO(v1)简介
实例分割是给出每个目标对应的mask,与语义分割的区别是,在语义分割里面只需要区分这个点是“猫”还是“狗”,实例分割里面是要判断这个是猫1还是猫2,即对同一类别的不同目标需要进行细分。所以在实例分割里面常用的两种方法为(1)top-down:先根据检测,然后在每个检测框里面进行分割 (2)bottom-up先分割,然后通过后处理来处理同一类别的不同实例,常采用聚类处理。
SOLO中的思路非常清奇,抛除了之前bottom-up和top-down的做法,首先,先思考一下怎么去区分一张图里面的不同实例呢?数据数据统计上作者统计了不同实例之间的距离和尺寸大小。发现98.3% 的的目标对距离>30,剩下的1.7%中的目标对中尺寸差距差1.5倍,从数据角度上看,两个实例要么尺寸不同要么距离较远。如何让网络去区分这个事情呢,下面就介绍下论文的思路,以及每一个branch的输出是什么?Target是什么?Loss是什么?后处理等等
2.思路介绍
2.1 尺寸上的解决方案:
其中尺寸可以通过FPN进行区分&#