高等数学复习笔记(六)- 一元函数积分学的应用

本节为高等数学复习笔记的第六部分,一元函数积分的应用,主要包括:平面图形面积公式,旋转体体积公式,函数平均值以及综合应用的几道例题 。

1. 平面图形的面积

   直 角 坐 标 系 直角坐标系 S = ∫ a b ∣ y 1 ( x ) − y 2 ( x ) ∣ S=\int _a^b|y_1(x)-y_2(x)| S=aby1(x)y2(x).

   极 坐 标 系 极坐标系 S = 1 2 ∫ α β ∣ r 1 2 ( θ ) − r 2 2 ( θ ) ∣ d θ S=\frac12\int_{\alpha}^{\beta}|r_1^2(\theta)-r_2^2(\theta)|d\theta S=21αβr12(θ)r22(θ)dθ.

2. 旋转体体积

   1 ) 曲 边 梯 形 绕 x 轴 一 周 得 到 的 实 心 旋 转 体 1)曲边梯形绕x轴一周得到的实心旋转体 1x V = ∫ a b π y 2 ( x ) d x V=\int_a^b\pi y^2(x)dx V=abπy2(x)dx.

   2 ) 绕 x 轴 一 周 得 到 的 空 心 旋 转 体 2)绕x轴一周得到的空心旋转体 2x V = π ∫ a b ∣ y 1 2 ( x ) − y 2 2 ( x ) ∣ d x V=\pi\int_a^b|y_1^2(x)-y_2^2(x)|dx V=πaby12(x)y22(x)dx

   3 ) x = a , x = b , x 轴 以 及 y ( x ) 组 成 的 曲 边 梯 形 绕 y 轴 一 周 得 到 的 3)x=a,x=b,x轴以及y(x)组成的曲边梯形绕y轴一周得到的 3x=a,x=b,xy(x)y 旋 转 体 旋转体 V = 2 π ∫ a b x ∣ y ( x ) ∣ d x V=2\pi\int_a^bx|y(x)|dx V=2πabxy(x)dx.

3. 函数平均值

   设 x ∈ [ a , b ] , 函 数 y ( x ) 在 [ a , b ] 上 的 平 均 值 为 设x\in[a,b],函数y(x)在[a,b]上的平均值为 x[a,b]y(x)[a,b] y ˉ = 1 b − a ∫ a b y ( x ) d x \bar y=\frac1{b-a}\int_a^by(x)dx yˉ=ba1aby(x)dx

4. 几道例题
4.1 例题1

   e g . 过 坐 标 原 点 作 曲 线 y = e x 的 切 线 eg.过坐标原点作曲线y=e^x的切线 eg.线y=ex线 该 切 线 与 曲 线 y = e x 该切线与曲线y=e^x 线线y=ex 以 及 x 轴 围 成 的 向 x 轴 负 方 向 无 限 伸 展 的 平 面 图 形 D , 求 以及x轴围成的向x轴负方向无限伸展的平面图形D,求 xxD
1 ) D 的 面 积 A 1)D的面积A 1DA 2 ) D 绕 直 线 x = 1 旋 转 一 周 的 旋 转 体 的 体 积 V 2)D绕直线x=1旋转一周的旋转体的体积V 2D线x=1V.
   解 解 设 切 点 P ( x 0 , y 0 ) 设切点P(x_0,y_0) P(x0,y0) 则 曲 线 y = e x 在 点 p 的 切 线 斜 率 为 则曲线y=e^x在点p的切线斜率为 线y=exp线 y ′ ( x 0 ) = e x 0 y'(x_0)=e^{x_0} y(x0)=ex0 切 线 方 程 y − y 0 = e x 0 ( x − x 0 ) 切线方程y-y_0=e^{x_0}(x-x_0) 线yy0=ex0(xx0) 它 经 过 坐 标 原 点 它经过坐标原点 所 以 有 所以有 − y 0 = − x 0 e x 0 -y_0=-x_0e^{x_0} y0=x0ex0 代 入 得 x 0 = 1 代入得x_0=1 x0=1 y 0 = e y_0=e y0=e 切 线 方 程 y = e x 切线方程y=ex 线y=ex
   1 ) 取 水 平 条 面 积 元 素 则 D 得 面 积 为 1)取水平条面积元素则D得面积为 1D
   A = ∫ 0 e ( y e − l n y ) d y A=\int_0^e(\frac ye-lny)dy A=0e(eylny)dy = ( y 2 2 e − y l n y + y ) ∣ 0 e =(\frac{y^2}{2e}-ylny+y)|_0^e =(2ey2ylny+y)0e = e 2 + l i m x → 0 + y l n y = e 2 =\frac e2+lim_{x\rightarrow 0^+}ylny=\frac e2 =2e+limx0+ylny=2e

   2 ) D 绕 直 线 x = 1 旋 转 一 周 所 成 得 旋 转 体 的 体 积 微 元 为 2)D绕直线x=1旋转一周所成得旋转体的体积微元为 2D线x=1
   d V = [ π ( 1 − l n y ) 2 − π ( 1 − y 2 ) 2 ] d y dV=[\pi(1-lny)^2-\pi(1-\frac y2)^2]dy dV=[π(1lny)2π(12y)2]dy
   ∴ V = π ∫ 0 e ( l n 2 y − 2 l n y + 2 y e − y 2 e 2 ) d y \therefore V=\pi\int_0^e(ln^2y-2lny+\frac{2y}e-\frac{y^2}{e^2})dy V=π0e(ln2y2lny+e2ye2y2)dy = π ( y l n 2 y − 4 y l n y + 4 y + y 2 e − y 3 3 e 2 ) ∣ 0 e =\pi(yln^2y-4ylny+4y+\frac{y^2}e-\frac{y^3}{3e^2})|_0^e =π(yln2y4ylny+4y+ey23e2y3)0e = 5 3 π e =\frac53\pi e =35πe.

4.2 例题2

e g . eg. eg.

1 ) 比 较 ∫ 0 1 ∣ l n t ∣ [ l n ( 1 + t ) ] n d t 1)比较\int_0^1|lnt|[ln(1+t)]^ndt 101lnt[ln(1+t)]ndt 与 ∫ 0 1 t n ∣ l n t ∣ d t ( n = 1 , 2 , . . . ) 的 大 小 与\int_0^1t^n|lnt|dt(n=1,2,...)的大小 01tnlntdtn=1,2,...;

2 ) 记 u n = ∫ 0 1 ∣ l n t ∣ [ l n ( 1 + t ) ] n d t ( n = 1 , 2 , . . . ) , 求 l i m n → ∞ u n 2)记u_n=\int_0^1|lnt|[ln(1+t)]^ndt(n=1,2,...),求lim_{n\rightarrow \infty}u_n 2un=01lnt[ln(1+t)]ndtn=1,2,...limnun.

解 解
   1 ) 当 0 ≤ t ≤ 1 时 1)当0\leq t\leq1时 10t1 0 ≤ l n ( 1 + t ) ≤ t 0\leq ln(1+t)\leq t 0ln(1+t)t 所 以 0 ≤ ∣ l n t ∣ [ l n ( 1 + t ) ] n ≤ t n ∣ l n t ∣ 所以0\leq |lnt|[ln(1+t)]^n\leq t^n|lnt| 0lnt[ln(1+t)]ntnlnt 积 分 保 号 性 有 积分保号性有 ∫ 0 1 ∣ l n t ∣ [ l n ( 1 + t ) ] n d t ≤ ∫ 0 1 t n ∣ l n t ∣ d t \int_0^1|lnt|[ln(1+t)]^ndt \leq \int_0^1t^n|lnt|dt 01lnt[ln(1+t)]ndt01tnlntdt.

   2 ) 由 1 ) 知 , 0 ≤ u n = ∫ 0 1 ∣ l n t ∣ [ l n ( 1 + t ) ] n d ≤ ∫ 0 1 t n ∣ l n t ∣ d t 2)由1)知,0\leq u_n=\int_0^1|lnt|[ln(1+t)]^nd\leq \int_0^1t^n|lnt|dt 210un=01lnt[ln(1+t)]nd01tnlntdt 由 于 ∫ 0 1 t n ∣ l n t ∣ d t = − ∫ 0 1 t n l n t d t = − 1 n + 1 ∫ 0 1 l n t d t n + 1 由于\int_0^1t^n|lnt|dt=-\int_0^1t^nlntdt=-\frac{1}{n+1}\int_0^1lntdt^{n+1} 01tnlntdt=01tnlntdt=n+1101lntdtn+1 = − 1 n + 1 t n + 1 l n t ∣ 0 1 − ( − 1 n + 1 ∫ 0 1 t n + 1 d l n t ) ( 分 部 积 分 ) =-\frac1{n+1}t^{n+1}lnt|_0^1-(-\frac1{n+1}\int_0^1t^{n+1}dlnt)(分部积分) =n+11tn+1lnt01(n+1101tn+1dlnt) = − t n + 1 n + 1 l n t ∣ 0 1 + 1 n + 1 ∫ 0 1 t n d t =-\frac{t^{n+1}}{n+1}lnt|_0^1+\frac1{n+1}\int_0^1t^ndt =n+1tn+1lnt01+n+1101tndt = 1 n + 1 ∫ 0 1 t n d t = 1 ( n + 1 ) 2 =\frac1{n+1}\int_0^1t^ndt=\frac{1}{(n+1)^2} =n+1101tndt=(n+1)21 ∴ l i m n → ∞ ∫ 0 1 t n ∣ l n t ∣ d t = l i m n → ∞ 1 ( n + 1 ) 2 = 0 \therefore lim_{n\rightarrow \infty}\int_0^1t^n|lnt|dt= lim_{n\rightarrow \infty}\frac{1}{(n+1)^2}=0 limn01tnlntdt=limn(n+1)21=0 根 据 夹 逼 准 则 , l i m n → ∞ u n = 0 根据夹逼准则,lim_{n\rightarrow \infty}u_n=0 limnun=0.

4.3 例题3

e g . 设 函 数 f ( x ) 和 g ( x ) 在 区 间 [ a , b ] 上 连 续 eg.设函数f(x)和g(x)在区间[a,b]上连续 eg.f(x)g(x)[a,b] 且 f ( x ) 单 调 增 加 且f(x)单调增加 f(x) 0 ≤ g ( x ) ≤ 1 0\leq g(x)\leq1 0g(x)1 证 明 证明

1 ) 0 ≤ ∫ 0 x g ( t ) d t ≤ x − a , x ∈ [ a , b ] 1)0\leq\int_0^xg(t)dt\leq x-a,x\in[a,b] 100xg(t)dtxax[a,b]

2 ) ∫ a a + ∫ a b g ( t ) d t f ( x ) d x ≤ ∫ a b f ( x ) g ( x ) d x 2)\int_a^{a+\int_a^bg(t)dt}f(x)dx\leq\int_a^bf(x)g(x)dx 2aa+abg(t)dtf(x)dxabf(x)g(x)dx
证 明 证明
   1 ) ∵ 0 ≤ g ( x ) ≤ 1 , 所 以 x ∈ [ a , b ] 时 有 ∫ a x 0 d t ≤ ∫ a x g ( t ) d t ≤ ∫ a x 1 d t 1)\because 0\leq g(x)\leq1,所以x\in[a,b]时有\int_a^x0dt\leq\int_a^xg(t)dt\leq\int_a^x1dt 10g(x)1x[a,b]ax0dtaxg(t)dtax1dt 即 0 ≤ ∫ 0 x g ( t ) d t ≤ x − a 即0\leq\int_0^xg(t)dt\leq x-a 00xg(t)dtxa.

   2 ) 令 F ( x ) = ∫ a a + ∫ a x g ( u ) d u f ( t ) d t − ∫ a x f ( t ) f ( t ) d t , x ∈ [ a , b ] 2)令F(x)=\int_a^{a+\int_a^xg(u)du}f(t)dt-\int_a^xf(t)f(t)dt,x\in[a,b] 2F(x)=aa+axg(u)duf(t)dtaxf(t)f(t)dtx[a,b]

   ∵ f ( x ) , g ( x ) 在 区 间 [ a , b ] 上 连 续 , ∴ F ( x ) 在 区 间 [ a , b ] 上 可 导 \because f(x),g(x)在区间[a,b]上连续,\therefore F(x)在区间[a,b]上可导 f(x),g(x)[a,b]F(x)[a,b] 且 F ′ ( x ) = f ( a + ∫ a x g ( u ) d u ) ⋅ g ( x ) − f ( x ) g ( x ) 且F'(x)=f(a+\int_a^xg(u)du)\cdot g(x)-f(x)g(x) F(x)=f(a+axg(u)du)g(x)f(x)g(x) ( ( ∫ a ϕ ( x ) f ( u ) d u ) x ′ = f [ ϕ ( x ) ] ⋅ ϕ ′ ( u ) ) ((\int_a^{\phi(x)}f(u)du)'_x=f[\phi(x)]\cdot\phi'(u)) (aϕ(x)f(u)du)x=f[ϕ(x)]ϕ(u)
   由 1 ) 知 由1)知 1 a + ∫ 0 x g ( u ) d u ≤ x a+\int_0^xg(u)du\leq x a+0xg(u)dux 又 f ( x ) 单 调 增 加 g ( x ) ≥ 0 又f(x)单调增加g(x)\geq0 f(x)g(x)0 所 以 F ′ ( x ) ≤ 0 所以F'(x)\leq0 F(x)0 即 F ( x ) 在 区 间 [ a , b ] 上 单 调 不 增 即F(x)在区间[a,b]上单调不增 F(x)[a,b] 由 F ( a ) = 0 由F(a)=0 F(a)=0 故 F ( b ) ≤ 0 故F(b)\leq 0 F(b)0 即 ∫ a a + ∫ a b g ( t ) d t f ( x ) d x ≤ ∫ a b f ( x ) g ( x ) d x 即\int_a^{a+\int_a^bg(t)dt}f(x)dx\leq\int_a^bf(x)g(x)dx aa+abg(t)dtf(x)dxabf(x)g(x)dx.


欢迎扫描二维码关注微信公众号 深度学习与数学   [每天获取免费的大数据、AI等相关的学习资源、经典和最新的深度学习相关的论文研读,算法和其他互联网技能的学习,概率论、线性代数等高等数学知识的回顾]
在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值