有人说,大模型+知识库就是新一代的员工。
可你有没有想过,如果你把一堆资料往员工桌上一扔,不教、不管,还想让他做出像样的工作,结果会如何?
这是很多人现在“用知识库喂大模型”的真实写照。
这篇文章是我在进行了数千小时的知识库实践后的一些思考:不仅告诉你“是什么”,更帮你弄明白“怎么做”。
你是不是也有这种感觉?
“我们知识库里已经有很多内容了,可是模型回答的问题却越来越不靠谱。”
问题不在知识数量,而在知识质量和结构。
知识库不是扔进去一堆垃圾,然后吐出来一堆垃圾。
“究竟该怎么构建有用的知识?”
不是从数据开始,而是从“你要解决的场景”开始。
知识是场景牵引出来的,而不是数据堆砌出来的。
“是不是只要建好知识库,大模型就能无所不能?”
知识是需要持续完善的。
大模型不能穷尽行业所有知识,你的知识库更不可能。
这篇文章带你从知识本源出发,思考如何构建真正有用的“知识治理平台”。
文章有点长,但是一定有收获。请耐心往下看。
什么是知识?
“知”是知道,“识”是辨识。
你知道小明今年10岁,体重120斤,但仅凭这些信息,无法指导你做出“小明今天晚饭吃什么?”的决策。
而当你获得一条“10岁儿童的正常体重范围是23-50kg”的信息时, 你能够判断小明超重了,然后得出“清淡饮食更合适”的决策。
“知识”是在某个行动决策前,使你能够对信息进行辨识的信息。
那知识是怎么产生的?
你调用一个知识,必然是因为你要做一个决策,而你做出一个决策,必然是在某个场景中发生的。
在“小明吃什么”的例子中,之所以决定让小明清淡饮食,是因为我们处在“控制体重”的场景中,调用到了“10岁儿童正常体重为23-50kg”这个知识。
一个有效的知识治理系统,需要从以下三步反推而来:
-
明确组织/用户面临的核心决策场景
-
识别每个场景所需的知识类型与来源
-
构建数据采集 → 信息归纳 → 知识组织的通路
知识是场景牵引出来的。
知识来源的两种形式
1. 显性知识
指那些可以直接获取的信息,比如权威文档、政策规定、行业标准等。
例如:“10岁儿童正常体重为23-50kg”——这类知识可以通过文献查到。
2. 隐性知识
需要从大量数据中归纳出来。
例如:你统计了几千份儿童健康报告,发现健康样本体重大多在23-50kg之间,于是形成了这条“标准”。
我们说的知识获取,其实是对信息的归纳,分为知识摄取和知识挖掘。
● 知识摄取:对已有内容进行结构化、归类、清洗,并存入系统。
● 知识挖掘:通过模式识别、统计分析等手段,从数据中“发现”知识。
以上,我总结和拓展为一句话:
场景的决策,取决于对知识的应用,知识的应用,取决于对信息的归纳,信息的归纳,取决于对数据的积累。
想更深入的理解这段话,可以了解一下DIKW金字塔模型。这里简单介绍一下:
维基百科的DIKW定义:
DIKW是关于数据(Data)、资讯(Information)、知识(Knowledge)及智慧(Wisdom)的体系,当中每一层都比下一层增加了某些特质。资料层最为基本,资讯层加入内容,知识层加入“如何去使用”,而智慧层加入“什么时候才用”。如此,DIKW体系是一个让我们了解分析、重要性及概念工作上的极限的体系。DIKW体系常用于资讯科学及知识管理。
用人话翻译过来:
DIKW金字塔模型包含四个层次:
-
数据(Data)就是最基本的原始数字、文字、符号,什么都没加工,比如你看到温度计上的一堆数字。
-
信息(Information)是把数据整理了一下,有了点意义,比如你知道“今天气温是25°C”。
-
知识(Knowledge)是你知道这些信息该怎么用,比如你知道“气温25°C很适合出门散步”,就是你能用得上了。
-
智慧(Wisdom)是你知道在什么情况下用什么知识,比如你会根据天气、场合来决定出门还是带伞,这就是有判断力和经验了。
这个模型非常有意义,它告诉我,数字时代下技术和应用发展的底层逻辑,有助于我在科技快速发展的趋势下找到自己的生态位:
数据平台 → 积累事实 → 形成信息
知识平台 → 归纳信息 → 形成知识
智能体平台 → 演绎知识 → 辅助决策
决策调度平台 → 指导行动 → 产生事实
我们继续说回到知识治理平台。
什么是知识治理?
知识治理的目标是最大化知识资产的价值,从而提升组织的运营效率。
它不同于传统的知识管理,不只是“把知识收集起来”,而是把整个知识的生命周期作为一个可以被规划、监控、优化的系统来对待。
知识治理包含三个核心过程:
-
知识的生产:从数据中归纳出结构化的知识(包括知识摄取与挖掘)
-
知识的消费:通过智能体在具体场景中使用知识,支持判断与决策
-
知识的再生产:通过使用过程的反馈与更新机制,推动知识的持续演化
围绕这三个过程,我把知识治理的成熟度拆解为三个衡量指标:
知识构建能力:是否能构建出贴合业务场景的知识? 不只是数据搬运工,而是场景驱动下的知识策划能力知识检索能力:是否能快速、精准地定位到需要的知识?
包括向量化检索、全文搜索、标签组织等手段的综合效果
知识更新能力:是否建立了持续的反馈机制来修正与补充知识?
包括用户反馈、系统监控 、定期评测等等
什么是知识治理平台?
想象你走进麦当劳。
不管你点的是汉堡、薯条还是鸡翅,背后支撑它们生产的,其实是同一套厨房设备平台——炸炉、烤箱、冷柜、标准化操作流程……这些设备与流程的统一,让麦当劳可以实现:高效生产 、保持一致品质 、快速响应不同菜单 。这套生产系统,就是它能规模化、稳定交付的根基。
而知识治理平台,其实就像是知识的“厨房操作系统”。
它不是某一个具体的知识库、标签系统或搜索引擎,而是一整套支持知识生命周期闭环运作的底层能力平台。
它的任务,是为组织中的所有知识活动提供“统一、可复用、可扩展”的流程和工具支持。
包括但不限于:
-
知识生成:从结构化/非结构化数据中摄取、挖掘、形成知识
-
知识归类:通过标签、主题、领域等方式组织知识
-
知识发布:让知识能够以合适的方式被系统、产品或人访问
-
知识应用:嵌入AI智能体或工作流,支持场景化决策
-
知识监测:收集使用反馈、判断有效性、推动更新
这一整套环节贯穿了从知识生产 → 消费 → 再生产的全过程,确保知识真正进入系统性运营状态。
知识治理平台至少要考虑三个问题。
1、一如何构建符合场景需要的知识?
知识不是从数据堆砌出来的,而是从业务场景中“牵引”出来的。
这背后其实是一种认知顺序的选择。我们常常“从数据出发”,然后陷入信息过载、边界模糊的困境;而“从智慧出发”,则更聚焦、目标明确。举个例子:
假设我们要构建一个“晚餐设计助手”。
我们可以把这个场景进一步细分为六个具体情境:规划菜单、采购食材、处理食材、烹饪过程、酒水搭配、餐桌布置。
每一个情境都有涉及的具体知识:
菜单规划 → 食材搭配知识
食材采购 → 新鲜度辨别
烹饪阶段 → 火候/调味技巧
餐桌布置 → 餐具风格知识等
通过场景→情境→知识的方式,我们不仅明确了“要什么知识”,还能推导出“这些知识从哪儿来”,以及标记出“知识的类型是什么”。
-
知识来源:内部结构化数据 、外部非结构化文档 、书籍/网页/API接口…
-
知识类型:食材搭配、新鲜度辨别、火候/调味、餐具风格
因此,知识治理平台需要具备:
"支持多源数据接入 、 快速定位提取知识 、 可对知识进行标记"
2、如何实现快速精准的知识检索?
人不能一口吞下一个馒头,AI 也不能一次读完整套文档。
知识检索的难点,不在于“有没有知识”,而在于如何让系统在合适的场景,准确抓出“最合适的那一小段”来用。因此,我们需要知识检索。知识检索通常有三个指标:检索速度、检索全面性和检索相关性。检索的手段包括:
-
语义 + 全文检索的混合检索方案,兼顾关键词和上下文含义
-
向量模型优化选择:根据性能与精度权衡,选择体积小、效果好的模型
-
文本分段机制:把内容切成更小单元,提升命中率
-
段落标签体系:增强语义辨识度,辅助精准召回
因此,知识治理平台需要具备:
“支持向量化存储、语义+关键词混合检索、段落切分与多维标签体系”
3、如何实现知识的及时与持续更新?
大模型不能穷尽一切,你的知识库更不可能。
在真实使用过程中,知识会不可避免地出现:错误、过时、缺失 、冗余 。
为了让知识库可以持续迭代完善,我们需要建立:
1. 用户反馈机制
通过集成反馈 API,收集使用者对知识引用效果的主观评价(如是否有帮助、是否推荐)
2. 系统自动分析
通过任务日志记录,分析哪些知识被频繁使用、被反复跳过,推测其有效性。
3. 场景评测机制
对每类场景准备标准测试集,定期评测知识库支撑效果,发现遗漏与偏差。
因此,知识治理平台需要具备:
“支持用户反馈机制 、自动分析并生成知识更新建议、定期评测“ 简单总结一下
知识治理平台能力结构
一个有效的知识治理平台,不是一堆功能的堆叠,而是一整套围绕“知识的获取、结构、使用和优化”构建起来的有机系统。
这部分,我们对照实际构建,来逐一拆解平台的核心模块和能力组成:
应用层:知识服务嵌入业务流程
平台最上层是知识驱动的应用系统,这些系统直接面向业务流程,提供智能化支持。
这类应用往往具备以下特征:
-
有用户界面(UI)
-
执行明确的业务流程(如决策建议、问答系统、文档生成等)
-
能够在流程中调取知识、使用知识并生成反馈数据
数据采集层:文件与数据库是知识的原料仓
文件库:知识采集的重要来源之一(不是唯一),包括非结构化内容:文档、表格、图片、视频、音频等。支持多级目录管理与权限控制、文件元信息(标签、分类)管理、文件内容全文检索、文件生命周期操作(新增、移动、拷贝、删除)
文件库是知识的“来源之一”,但不是“唯一”,更不应成为“知识库本身”。
数据库:当有些业务数据原本就以结构化形式存在(如清单、日志),则可以直接作为知识构建的原料。支持自定义数据表结构(字段、类型、注释) 、可对接外部业务数据库系统。
对于超长的表格数据,建议使用数据库,而不是文件库。
元数据层:让数据具备被理解的能力
元数据是描述数据的数据,例如:
-
文档类元数据:作者、标题、创建时间、文档类型等
-
数据类元数据:字段说明、来源系统、更新时间等
元数据是所有知识挖掘与建构的基础,让原始数据具备“上下文”与“可追溯性”。
知识构建层:从数据中提炼出知识
平台的中层核心能力,是把原始内容转化为结构化知识的过程,包括:
知识摄取:从非结构化内容(如文本、图片、音视频)中提取知识点,形成结构化条目。
知识挖掘:通过模式识别、统计分析等手段,从数据中发现规律,生成新的知识。
知识库层:组织、存储、管理知识和标签
-
知识文档:整篇文件直接作为知识单元,适用于短文本文档场景
-
知识分段:将文本内容分为父段 → 子段 → 知识点的三级结构,便于多粒度检索
为什么要做分段?用户的问题可能是概括性的,也可能是非常具体的。分段后,系统可以从粗到细地匹配最合适的知识粒度。
-
知识点:知识点可以从不同粒度生成,包括文件级知识点(基于元信息提炼)、段落级知识点(结合上下文生成)、子段级知识点(更细致、具体)
-
知识标签:知识标签是知识的维度组织工具,支持三种类型:模型标签:由模型自动提取的主题标签,分层覆盖文件、段落、句子多个层次 行业标签:由人工预定义的标签体系,通常为树状结构,体现行业知识结构 自定义标签:用户在知识使用过程中,根据业务需要新增的个性化标签
-
知识图谱:对于存在复杂的实体-属性-关系结构的知识内容,可通过知识图谱进行建模与存储。
元知识层:描述知识的“适用边界”
元知识是“关于知识的知识”,它用于定义:
-
哪段知识适用于哪些场景
-
哪种角色可以使用
-
哪些前提条件下有效
这种机制对实现智能体在复杂场景下的“精准引用”尤为关键。
知识检索层:让知识被精准找到
高质量的知识检索是平台应用层调用有效知识的前提。平台需支持多种检索方式,并提供效果可测的机制。支持的检索方式:
-
全文检索(关键词匹配)
-
语义向量检索(上下文理解)
-
SQL 检索(结构化数据)
-
元知识检索(基于适用条件匹配)
-
混合检索(语义 + 标签 + 元知识多维融合)
检索命中测试:检索效果可视化测试工具,用于对比不同检索手段下的命中率和召回率,帮助运维人员持续优化知识组织与分段策略。
知识治理平台的能力结构,并不是“上传文档+建索引”那么简单,而是一个从原始内容到结构知识再到应用反馈的完整系统闭环。这套系统需要支撑:
-
数据→知识的转化(摄取与挖掘)
-
知识→应用的调用(检索与服务)
-
应用→数据的闭环(反馈与优化)
它既是平台,也是机制,更是一种知识生产力方法论。
以上,这篇文章已经6000多字了。
我们从知识本源开始,探讨了知识库的建设究竟要关注哪些问题,以及知识治理平台的能力层级。
再想到什么,我会继续接着写。
如果你能看到这里,在对大模型+知识库的理解上你已经超过了绝大多数的人。
写在最后
在这个“万物皆AI”的时代,我们学会了提问,然后等待一个答案自动弹出。
当知识并没有变得触手可及,当等到的答案始终没有令你满意,
我们开始意识到:只是暴力的往知识库灌文档,没用。
知识库,不是信息的归档,而是认知的经营。
一个真正有用的知识平台,不是装了多大规模的文档,而是在你真正需要的时候,能否给你正确的、够用的、值得信赖的那一部分知识。
这不是仅靠大模型可以做到的,我们必须参与进去,去梳理、去治理、去验证。
如果你也正在搭建属于自己的知识平台,或是在组织里推进类似的事情,我相信你会有许多体会、也同样遇到不少挑战。
欢迎留言,分享你的实践和思考。
我们一起,把知识,真正用起来。
以上,既然看到这里了,如果觉得不错,随手点个赞、分享、推荐三连吧,我们,下次再见。
文章转载自:AI粉嫩特攻队