torch.optim优化算法理解之optim.Adam()

torch.optim是一个实现了多种优化算法的包,大多数通用的方法都已支持,提供了丰富的接口调用,未来更多精炼的优化算法也将整合进来。
为了使用torch.optim,需先构造一个优化器对象Optimizer,用来保存当前的状态,并能够根据计算得到的梯度来更新参数。
要构建一个优化器optimizer,你必须给它一个可进行迭代优化的包含了所有参数(所有的参数必须是变量s)的列表。 然后,您可以指定程序优化特定的选项,例如学习速率,权重衰减等。

optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr = 0.0001)
self.optimizer_D_B = torch.optim.Adam(self.netD_B.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))

Optimizer还支持指定每个参数选项。 只需传递一个可迭代的dict来替换先前可迭代的Variable。dict中的每一项都可以定义为一个单独的参数组,参数组用一个params键来包含属于它的参数列表。其他键应该与优化器接受的关键字参数相匹配,才能用作此组的优化选项。

optim.SGD([
                {'params': model.base.parameters()},
                {'params': model.classifier.parameters(), 'lr': 1e-3}
            ], lr=1e-2, momentum=0.9)

如上,model.base.parameters()将使用1e-2的学习率,model.classifier.parameters()将使用1e-3的学习率。0.9的momentum作用于所有的parameters。
优化步骤:
所有的优化器Optimizer都实现了step()方法来对所有的参数进行更新,它有两种调用方法:

optimizer.step()

这是大多数优化器都支持的简化版本,使用如下的backward()方法来计算梯度的时候会调用它。

for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()
optimizer.step(closure)

一些优化算法,如共轭梯度和LBFGS需要重新评估目标函数多次,所以你必须传递一个closure以重新计算模型。 closure必须清除梯度,计算并返回损失。

for input, target in dataset:
    def closure():
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        return loss
    optimizer.step(closure)

Adam算法:

adam算法来源:Adam: A Method for Stochastic Optimization

Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。它的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。其公式如下:

这里写图片描述

其中,前两个公式分别是对梯度的一阶矩估计和二阶矩估计,可以看作是对期望E|gt|,E|gt^2|的估计;
公式3,4是对一阶二阶矩估计的校正,这样可以近似为对期望的无偏估计。可以看出,直接对梯度的矩估计对内存没有额外的要求,而且可以根据梯度进行动态调整。最后一项前面部分是对学习率n形成的一个动态约束,而且有明确的范围

class torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)

参数:

params(iterable):可用于迭代优化的参数或者定义参数组的dictslr (float, optional) :学习率(默认: 1e-3)
betas (Tuple[float, float], optional):用于计算梯度的平均和平方的系数(默认: (0.9, 0.999))
eps (float, optional):为了提高数值稳定性而添加到分母的一个项(默认: 1e-8)
weight_decay (float, optional):权重衰减(如L2惩罚)(默认: 0)
step(closure=None)函数:执行单一的优化步骤
closure (callable, optional):用于重新评估模型并返回损失的一个闭包 

torch.optim.adam源码:

import math
from .optimizer import Optimizer

class Adam(Optimizer):
    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,weight_decay=0):
        defaults = dict(lr=lr, betas=betas, eps=eps,weight_decay=weight_decay)
        super(Adam, self).__init__(params, defaults)

    def step(self, closure=None):
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = grad.new().resize_as_(grad).zero_()
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = grad.new().resize_as_(grad).zero_()

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']

                state['step'] += 1

                if group['weight_decay'] != 0:
                    grad = grad.add(group['weight_decay'], p.data)

                # Decay the first and second moment running average coefficient
                exp_avg.mul_(beta1).add_(1 - beta1, grad)
                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)

                denom = exp_avg_sq.sqrt().add_(group['eps'])

                bias_correction1 = 1 - beta1 ** state['step']
                bias_correction2 = 1 - beta2 ** state['step']
                step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1

                p.data.addcdiv_(-step_size, exp_avg, denom)

        return loss

Adam的特点有:
1、结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点;
2、对内存需求较小;
3、为不同的参数计算不同的自适应学习率;
4、也适用于大多非凸优化-适用于大数据集和高维空间。

  • 159
    点赞
  • 703
    收藏
    觉得还不错? 一键收藏
  • 13
    评论
torch.optim.Adam 和 torch.optim.SGD 是 PyTorch 中两种不同的优化器,它们在优化算法和使用方式上存在一些区别。 1. 优化算法: - Adam(Adaptive Moment Estimation)是一种基于梯度的优化算法,它结合了 AdaGrad 和 RMSProp 的优点。它使用动量和自适应学习率来更新参数,能够更快地收敛,并且对于稀疏梯度和噪声较大的问题有较好的表现。 - SGD(Stochastic Gradient Descent)是一种基本的随机梯度下降算法,每次更新参数时仅使用一个样本或一小批样本的梯度。它通过迭代地更新参数来最小化损失函数,适用于大规模数据集和较简单的模型。 2. 学习率调整: - Adam 使用自适应学习率,每个参数都有自己的学习率,根据梯度的历史信息来自动调整学习率。 - SGD 需要手动设置全局学习率,并且可以通过学习率衰减策略进行调整,如按照固定时间表衰减或根据验证集的性能进行衰减。 3. 参数更新方式: - Adam 通过存储每个参数的历史梯度平方的指数衰减平均来计算自适应学习率,使用动量项来加速参数更新。 - SGD 使用每个参数的梯度和学习率来更新参数,可以选择添加动量项来加速收敛。 选择 Adam 还是 SGD 取决于问题的性质和数据集的规模。在大多数情况下,Adam 通常能够更快地收敛,特别是对于复杂的模型和大规模数据集。然而,在某些情况下,SGD 可能会更好地适应局部最优解,并且具有更低的内存使用量。 需要根据具体问题和实验结果来选择合适的优化器。可以尝试不同的优化器并根据模型性能和训练速度进行比较,以确定最佳选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值