【学习笔记】数理统计习题八

Q1: Let X 1 , … , X n X_1,\dots,X_n X1,,Xn be an iid sample of Possion distribution with parameter λ > 0 \lambda>0 λ>0. Find an approximate 100 ( 1 − α ) % 100(1-\alpha)\% 100(1α)% confidence interval for λ \lambda λ.

解: 已知泊松分布的均值和方差均为 λ \lambda λ X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是一个样本,因为样本容量 n n n较大,由中心极限定理,知
∑ i = 1 n X i − n λ n λ = n X ˉ − n λ n λ \frac{\displaystyle\sum_{i=1}^nX_i-n\lambda}{\sqrt{n\lambda}}=\frac{n\bar{X}-n\lambda}{\sqrt{n\lambda}} nλ i=1nXinλ=nλ nXˉnλ​ 近似地服从 N ( 0 , 1 ) N(0,1) N(0,1)分布,于是有
P { − z 1 − α / 2 < n X ˉ − n λ n λ < z 1 − α / 2 } = 1 − α P\{-z_{1-\alpha/2}<\frac{n\bar{X}-n\lambda}{\sqrt{n\lambda}}<z_{1-\alpha/2}\}=1-\alpha P{ z1α/2<nλ nXˉnλ<z1α/2}=1α​ 而不等式
− z 1 − α / 2 < n X ˉ − n λ n λ < z 1 − α / 2 -z_{1-\alpha/2}<\frac{n\bar{X}-n\lambda}{\sqrt{n\lambda}}<z_{1-\alpha/2} z1α/2<nλ nXˉnλ<z1α/2​ 等价于
n λ 2 − ( 2 n X ˉ + z 1 − α / 2 2 ) λ + n X ˉ 2 < 0 n\lambda^2-(2n\bar{X}+z_{1-\alpha/2}^2)\lambda+n\bar{X}^2<0 nλ2(2nXˉ+z1α/22)λ+nXˉ2<0​ 记
p 1 = 1 2 a ( − b − b 2 − 4 a c ) p 2 = 1 2 a ( − b + b 2 − 4 a c ) p_1=\frac{1}{2a}(-b-\sqrt{b^2-4ac})\\ p_2=\frac{1}{2a}(-b+\sqrt{b^2-4ac}) p1=2a1(bb24ac )p2=2a1(b+b24ac )​ 此处 a = n , b = − ( 2 n X ˉ + z 1 − α / 2 2 ) , c = n λ 2 a=n,b=-(2n\bar{X}+z_{1-\alpha/2}^2),c=n\lambda^2 a=n,b=(2nXˉ+z1α/22),c=nλ2

​ 于是综上可得, λ \lambda λ的一个置信水平为 1 − α 1-\alpha 1α的置信区间为 ( p 1 , p 2 ) (p_1,p_2) (p1,p2)

Q2: Suppose that an event A A A was observed 36 times out of 120 independent experiments. Use CLT to find an approximate 95 % 95\% 95% confidence interval for P ( A ) P(A) P(A).

解: 已知题目中的分布为二项分布,则分布律为
f ( x ; p ) = p x ( 1 − p ) 1 − x   ,   x = 0 , 1 f(x;p)=p^x(1-p)^{1-x}\ ,\ x=0,1 f(x;p)=px(1p)1x , x=0,1​ 其中 p = P ( A ) p=P(A) p=P(A),已知二项分布的均值和方差分别为
μ = p   ,   σ 2 = p ( 1 − p ) \mu=p\ ,\ \sigma^2=p(1-p) μ=p , σ2=p(1p)​ 设 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是一个样本,由中心极限定理,知
∑ i = 1 n X i − n p n p ( 1 − p ) = n X ˉ − n p n p ( 1 − p ) \frac{\displaystyle\sum_{i=1}^nX_i-np}{\sqrt{np(1-p)}}=\frac{n\bar{X}-np}{\sqrt{np(1-p)}} np(1p) i=1nXinp=np(1p) nXˉnp​ 近似地服从 N ( 0 , 1 ) N(0,1) N(0,1)分布,于是有
P { − z 1 − α / 2 < n X ˉ − n p n p ( 1 − p ) < z 1 − α / 2 } = 1 − α P\{-z_{1-\alpha/2}<\frac{n\bar{X}-np}{\sqrt{np(1-p)}}<z_{1-\alpha/2}\}=1-\alpha P{ z1α/2<np(1p) nXˉnp<z1α/2}=1α​ 而不等式
− z 1 − α / 2 < n X ˉ − n p n p ( 1 − p ) < z 1 − α / 2 -z_{1-\alpha/2}<\frac{n\bar{X}-np}{\sqrt{np(1-p)}}<z_{1-\alpha/2} z1α/2<np(1p) nXˉnp

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
概率论与数理统计是一门研究随机现象的规律性和统计推断的学科。它的基础是概率论,该理论研究的是随机事件发生的可能性。数理统计则是根据观察到的样本,通过对未知参数的估计和对假设的检验来对总体进行推断。 概率论与数理统计的应用非常广泛,涉及到许多不同的领域。在自然科学中,概率论与数理统计被用来建立和分析模型,解释实验结果,以及进行科学研究。在社会科学和人文科学中,它帮助研究人员通过统计分析来得出结论,并提供可靠的推断和决策依据。在工程领域,概率论与数理统计被用来分析和优化系统的可靠性和性能。 《概率论与数理统计笔记PDF》是一种学习资料,它提供了该学科的基本概念、定理和方法。这份笔记可以帮助读者理解概率论与数理统计的基本原理和应用,并提供实际案例和习题来加深对这些概念的掌握。通过阅读这份笔记,读者可以了解概率、随机变量、概率分布、统计推断等重要概念,以及它们在实际问题中的应用。 这份笔记的PDF格式使得它可以方便地在电子设备上阅读和存储。读者可以自由地选择在自己的电脑、平板电脑或手机上学习,随时随地进行学习。此外,PDF格式还允许读者进行注释和书签,方便他们标记和回顾重要内容。 总之,《概率论与数理统计笔记PDF》是一份有助于理解和掌握概率论与数理统计学习资料。它提供了基本的概念和方法,并通过实例和习题帮助读者巩固所学知识。同时,它的PDF格式也方便读者在电子设备上学习和存储。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值