项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步
在概率论中,一组独立同分布的随机变量 x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,⋯,xn出现的频率很高。独立同分布,independent and identically distributed ,一般缩写为i.i.d。在概率论中,如果随机变量具有相同的概率分布,并且随机变量之间相互独立,那么这组随机变量就满足独立同分布。本文特意为大家整理一下与一组独立同分布的随机变量 x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,⋯,xn相关的一些有意思的小问题。
1.Case1
已知随机变量 x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,⋯,xn相互独立且同分布,方差为 σ 2 \sigma^2 σ2, y = 1 n ∑ 1 n x i y = \frac{1}{n} \sum_1^nx_i y=n1∑1nxi,求 C o v ( x 1 , y ) Cov(x_1,y) Cov(x1,y)。
解答过程:
设
E
(
x
1
)
=
E
(
y
)
=
k
E(x_1) = E(y) = k
E(x1)=E(y)=k ,则有
C
o
v
(
x
1
,
y
)
=
E
(
x
1
y
)
−
E
(
x
1
)
E
(
y
)
=
E
(
x
1
y
)
−
k
2
\begin{aligned} Cov(x_1,y) & =E(x_1y) - E(x_1)E(y) \\ & = E(x_1y) - k^2 \end{aligned}
Cov(x1,y)=E(x1y)−E(x1)E(y)=E(x1y)−k2
E ( x 1 y ) = 1 n E ( x 1 2 + ∑ i = 2 n x 1 x i ) = 1 n E ( x 2 ) + 1 n ∑ i = 2 n E ( x 1 x i ) = σ 2 + k 2 n + n − 1 n k 2 \begin{aligned} E(x_1y) & = \frac{1}{n}E(x_1^2+\sum_{i=2}^nx_1x_i) \\ & = \frac{1}{n}E(x^2) + \frac{1}{n}\sum_{i=2}^nE(x_1x_i) \\ & = \frac{\sigma^2 + k^2}{n} + \frac{n-1}{n}k^2 \end{aligned} E(x1y)=n1E(x12+i=2∑nx1xi)=n1E(x2)+n1i=2∑nE(x1xi)=nσ2+k2+nn−1k2
将下面的式子带入,很容易得到:
C
o
v
(
x
1
,
y
)
=
σ
2
n
Cov(x_1,y) = \frac{\sigma^2}{n}
Cov(x1,y)=nσ2
2.Case2
已知随机变量
x
1
,
x
2
,
⋯
,
x
n
x_1,x_2,\cdots,x_n
x1,x2,⋯,xn相互独立且同分布,求
y
=
x
1
+
x
2
+
⋯
+
x
n
y=x_1+x_2+\cdots+x_n
y=x1+x2+⋯+xn的概率密度函数,均值,方差。
解答过程:
先看
n
=
2
n=2
n=2的情况,此时
y
=
x
1
+
x
2
y=x_1+x_2
y=x1+x2
p
(
y
)
=
P
{
Y
≤
y
}
=
p
{
x
1
+
x
2
≤
y
}
=
∫
−
∞
+
∞
f
(
x
)
∫
−
∞
y
−
x
f
(
z
)
d
z
p(y) = P\{Y \le y\} = p\{x_1+x_2 \le y\} = \int _{-\infty}^{+\infty}f(x)\int_{-\infty}^{y-x}f(z)dz
p(y)=P{Y≤y}=p{x1+x2≤y}=∫−∞+∞f(x)∫−∞y−xf(z)dz
则概率密度
p
2
(
y
)
=
∫
−
∞
+
∞
f
(
x
)
f
(
y
−
x
)
d
y
p_2(y) = \int_{-\infty}^{+\infty}f(x)f(y-x)dy
p2(y)=∫−∞+∞f(x)f(y−x)dy
对于
n
=
3
n=3
n=3
p
3
(
y
)
=
∫
−
∞
+
∞
p
2
(
x
)
f
(
y
−
x
)
d
x
=
∫
−
∞
+
∞
∫
−
∞
+
∞
f
(
z
)
f
(
x
−
z
)
d
z
f
(
y
−
x
)
d
x
p_3(y)=\int_{-\infty}^{+\infty}p_2(x)f(y-x)dx=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(z)f(x-z)dzf(y-x)dx
p3(y)=∫−∞+∞p2(x)f(y−x)dx=∫−∞+∞∫−∞+∞f(z)f(x−z)dzf(y−x)dx
以此类推,且统一变量字母,可得:
p
n
(
y
)
=
∫
−
∞
+
∞
∫
−
∞
+
∞
⋯
∫
−
∞
+
∞
f
(
x
1
)
f
(
x
2
−
x
1
)
f
(
x
3
−
x
2
)
⋯
f
(
x
n
−
1
−
x
n
−
2
)
f
(
y
−
x
n
−
1
)
d
x
1
d
x
2
⋯
d
x
n
−
1
p_n(y)=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}\cdots\int_{-\infty}^{+\infty}f(x_1)f(x_2-x_1)f(x_3-x_2)\cdots f(x_{n-1}-x_{n-2})f(y-x_{n-1})dx_1dx_2\cdots dx_{n-1}
pn(y)=∫−∞+∞∫−∞+∞⋯∫−∞+∞f(x1)f(x2−x1)f(x3−x2)⋯f(xn−1−xn−2)f(y−xn−1)dx1dx2⋯dxn−1
均值很容易看出来是为
n
E
x
i
nEx_i
nExi,下面看看求方差。
D
(
y
)
=
E
(
y
2
)
−
E
2
(
y
)
=
E
(
x
1
+
x
2
+
⋯
+
x
n
)
2
−
(
n
E
x
)
2
=
E
(
x
1
2
+
x
2
2
+
⋯
+
x
n
2
+
2
∑
i
=
1
n
∑
j
=
1
,
j
≠
i
n
x
i
x
j
)
−
(
n
E
x
)
2
=
n
(
E
x
)
2
+
n
D
x
i
+
n
(
n
−
1
)
(
E
x
)
2
−
n
2
(
E
x
)
2
=
n
D
x
i
\begin{aligned} D(y) & =E(y^2) - E^2(y) \\ & = E(x_1+x_2+\cdots+x_n)^2-(nEx)^2 \\ & = E(x_1^2+x_2^2+ \cdots+x_n^2+2\sum_{i=1}^n\sum_{j=1,j\ne i}^n x_ix_j)-(nEx)^2 \\ & = n(Ex)^2+nDx_i + n(n-1)(Ex)^2-n^2(Ex)^2 \\ & = nDx_i \end{aligned}
D(y)=E(y2)−E2(y)=E(x1+x2+⋯+xn)2−(nEx)2=E(x12+x22+⋯+xn2+2i=1∑nj=1,j=i∑nxixj)−(nEx)2=n(Ex)2+nDxi+n(n−1)(Ex)2−n2(Ex)2=nDxi
如果稍微扩展一下,
y
=
c
1
x
1
+
c
2
x
2
+
⋯
+
c
n
x
n
y=c_1x_1+c_2x_2+\cdots+c_nx_n
y=c1x1+c2x2+⋯+cnxn,那么期望为
E
(
y
)
=
∑
c
i
E
(
x
i
)
E(y) = \sum c_iE(x_i)
E(y)=∑ciE(xi),求方差的方法与上面类似:
D
(
y
)
=
E
(
y
2
)
−
E
(
y
)
2
=
E
(
c
1
x
1
+
c
2
x
2
+
⋯
+
x
n
)
2
−
E
2
(
c
1
x
1
+
c
2
x
2
+
⋯
+
x
n
)
=
E
(
c
1
2
x
1
2
+
c
2
2
x
2
2
+
⋯
+
c
n
2
x
n
2
+
2
∑
i
=
1
n
∑
j
=
1
,
j
≠
i
n
x
i
x
j
)
−
E
2
(
c
1
x
1
+
c
2
x
2
+
⋯
+
x
n
)
=
∑
i
=
1
n
c
i
2
(
E
x
i
)
2
+
∑
i
=
1
n
c
i
2
D
x
i
+
2
∑
i
=
1
n
∑
j
=
1
,
j
≠
i
n
x
i
x
j
)
−
E
2
(
c
1
x
1
+
c
2
x
2
+
⋯
+
x
n
)
=
∑
i
=
1
n
c
i
2
D
x
i
\begin{aligned} D(y) & =E(y^2) - E(y)^2 \\ & = E(c_1x_1+c_2x_2+\cdots+x_n)^2-E^2(c_1x_1+c_2x_2+\cdots+x_n) \\ & = E(c_1^2x_1^2+c_2^2x_2^2+ \cdots+c_n^2x_n^2+2\sum_{i=1}^n\sum_{j=1,j\ne i}^n x_ix_j)-E^2(c_1x_1+c_2x_2+\cdots+x_n)\\ & = \sum_{i=1}^n c_i^2 (Ex_i)^2 + \sum_{i=1}^nc_i^2 Dx_i + 2\sum_{i=1}^n\sum_{j=1,j\ne i}^n x_ix_j) -E^2(c_1x_1+c_2x_2+\cdots+x_n)\\ &=\sum_{i=1}^nc_i^2Dx_i \end{aligned}
D(y)=E(y2)−E(y)2=E(c1x1+c2x2+⋯+xn)2−E2(c1x1+c2x2+⋯+xn)=E(c12x12+c22x22+⋯+cn2xn2+2i=1∑nj=1,j=i∑nxixj)−E2(c1x1+c2x2+⋯+xn)=i=1∑nci2(Exi)2+i=1∑nci2Dxi+2i=1∑nj=1,j=i∑nxixj)−E2(c1x1+c2x2+⋯+xn)=i=1∑nci2Dxi