一文带你快速配置Ultralytics(yolo5 yolo8 yolo11等)训练、运行环境

本文详细介绍了如何在Windows/Linux系统上快速配置YOLO8环境,包括在CPU和GPU环境下分别进行的步骤,以及如何利用anaconda和condacreate创建虚拟环境,安装PyTorch和Ultralytics库。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ultralytics是一个支持YOLO全系列的训练、推理、功能十分强大、使用极其便捷的框架,我们可以借助该框架对yolo5 yolo8 yolo9 yolo10 yolo11等进行训练及推理。以本文介绍如何快速配置ultralytics环境,开门见山,我们直接步入正题

前置条件:电脑中已经安装配置好anaconda、或者miniconda、或者python venv虚拟环境中的任意一种(如果电脑中没有这些软件环境,可自行百度安装配置,网上教程很多,优先选择anaconda,后面会解释)

重要说明:环境分为CPU环境与GPU环境,选择任意一种即可。鼓励有英伟达显卡的用户优先选择GPU环境,速度会快很多很多

本套教程适合windows 、Liunx、MacOS系统

适合选择CPU环境的情况:

(1)电脑上没有英伟达显卡(N卡)

(2)安装不好英伟达显卡驱动以及CUDA工具包并且可以接受检测速度慢

(3)觉得配置gpu环境麻烦的用户(因为如果你看了第3章节,你会发现配置CPU环境只需要一行命令,比配置GPU环境简单不止10倍)

适合选择GPU环境的情况:电脑上有英伟达独立显卡(显存大小不限但最好4G以上)且已经安装好英伟达显卡驱动。注意一定是英伟达的独立显卡,不是AMD显卡更不是集成显卡!

Tips :电脑上有英伟达显卡,如何知晓显卡驱动是否安装?

答:打开电脑的命令行窗口,键入 nvidia-smi命令,如果有输出则安装成功,如下图所示:

若电脑上有英伟达显卡但是没有安装显卡驱动,请百度相关教程,网上教程较多。 本人主页也有相关教程:如何安装、升级英伟达显卡驱动_英伟达驱动-CSDN博客

注意,如果你是从0开始搭建环境(从安装英伟达显卡开始)安装好显卡驱动之后,完全没有必要自己再取安装cuda,cudnn,现在的pytorch都已经预构建了cuda以及cudnn,换言之,下载好了gpu版本的pytorch,

### Ultralytics CLS 模型介绍 CLS 是 Classification 的缩写,在 ultralytics 库中代表用于图像分类的任务模型。此模型可以执行多类别或多标签的图像分类任务,适用于各种应用场景。 对于 ultralytics 提供的 YOLO 系列模型而言,除了常见的目标检测 (detect) 和分割 (segment),也支持分类 (classify)[^1]。这意味着用户能够利用预训练权重快速启动项目,并通过简单的配置文件调整来适应不同的数据集需求。 ### 使用方法 #### 安装依赖项 为了使用 ultralytics 的 CLS 模型,首先需要安装对应的 Python 包: ```bash pip install ultralytics ``` #### 加载预训练模型 可以通过如下方式轻松加载官方提供的预训练分类模型: ```python from ultralytics import YOLO model = YOLO('yolov8n-cls.pt') # 小型版本的预训练分类模型 ``` 此处 `yolov8n-cls.pt` 表示小型版(nano)的预训练分类模型;其他可用选项还包括 s/m/l/x 不同大小规格以及自定义路径下的 `.pt` 文件[^2]。 #### 推理预测 完成模型实例化之后就可以直接调用 predict 方法来进行推理操作了: ```python results = model.predict(source='https://ultralytics.com/images/bus.jpg') print(results) ``` 这段代码会返回一个 Results 对象列表,其中包含了每张输入图片对应的结果信息,例如置信度分数(confidence scores)、所属类别(class labels)等属性。 #### 训练新模型 如果想要基于自己的数据集微调或重新训练一个新的分类器,则只需指定相应的参数即可开始训练流程: ```python model.train(data='./datasets/imagenette', epochs=100, imgsz=640) ``` 这里的数据集目录结构应当遵循 ImageFolder 格式,即根目录下有多个子文件夹分别表示不同类别的样本集合。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

城南皮卡丘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值