Ultralytics是一个支持YOLO全系列的训练、推理、功能十分强大、使用极其便捷的框架,我们可以借助该框架对yolo5 yolo8 yolo9 yolo10 yolo11等进行训练及推理。以本文介绍如何快速配置ultralytics环境,开门见山,我们直接步入正题
前置条件:电脑中已经安装配置好anaconda、或者miniconda、或者python venv虚拟环境中的任意一种(如果电脑中没有这些软件环境,可自行百度安装配置,网上教程很多,优先选择anaconda,后面会解释)
重要说明:环境分为CPU环境与GPU环境,选择任意一种即可。鼓励有英伟达显卡的用户优先选择GPU环境,速度会快很多很多
本套教程适合windows 、Liunx、MacOS系统
适合选择CPU环境的情况:
(1)电脑上没有英伟达显卡(N卡)
(2)安装不好英伟达显卡驱动以及CUDA工具包并且可以接受检测速度慢
(3)觉得配置gpu环境麻烦的用户(因为如果你看了第3章节,你会发现配置CPU环境只需要一行命令,比配置GPU环境简单不止10倍)
适合选择GPU环境的情况:电脑上有英伟达独立显卡(显存大小不限但最好4G以上)且已经安装好英伟达显卡驱动。注意一定是英伟达的独立显卡,不是AMD显卡更不是集成显卡!
Tips :电脑上有英伟达显卡,如何知晓显卡驱动是否安装?
答:打开电脑的命令行窗口,键入 nvidia-smi命令,如果有输出则安装成功,如下图所示:
若电脑上有英伟达显卡但是没有安装显卡驱动,请百度相关教程,网上教程较多。 本人主页也有相关教程:如何安装、升级英伟达显卡驱动_英伟达驱动-CSDN博客。
注意,如果你是从0开始搭建环境(从安装英伟达显卡开始)安装好显卡驱动之后,完全没有必要自己再取安装cuda,cudnn,现在的pytorch都已经预构建了cuda以及cudnn,换言之,下载好了gpu版本的pytorch,