yolov11上手之图像检测进阶

一 介绍

在网上看到视频后,就打算的上手,同时UP主也提供了数据集,再完成图像检测入门后就马上开始了.

二 模型训练

在图像检测入门这文的环境基础上,拿到数据集后上传服务器,新建cd.yaml.

path: /opt/yolo/cd
train: images/train
val: images/val
test: images/test
names:
  0: cat
  1: dog

jupyter中运行代码,在这之前执行pip show yolo.确认jupyter运行在yolo的env.

from ultralytics import YOLO
model =YOLO("yolo11s.pt")
train_results=model.train(
    data="cd.yaml",
    epochs=100,
    imgsz=640,
    device="cuda",
    batch=10,
    save=True,
    save_period=5,
    project="runs/detect",
    workers=8
)

训练结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值