1.k近邻算法
k近邻算法简单、直观给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类.下面先叙述k近邻算法,然后再讨论其细节。
1.1k近邻算法
近邻法的特殊情况:k=1情形,称为最近邻算法.对于输入的实例点(特征向量) x x x,最近邻法将训练数据集中与 x x x最邻近点的类作为 x x x的类。
1.2k近邻模型
k近邻法使用的模型实际上对应于对特征空间的划分.模型由三个基本要素——距离度量、k值的选择和分类决策规则决定。
k近邻法中, 当训练集、距离度量(如欧氏距离)、k值及分类决策规则(如多数表决)确定后,对于任何一个新的输入实例,它所属的类唯一的确定.这相当于根据上述要素将特征空间划分为一些子空间,确定子空间里的每个点所属的类,这一事实从最近邻算法中可以看得很清楚。
特征空间中,对每个训练实例点 x i x_i xi,距离该点比其他点更近的所有点组成个区域,叫作单元 (ce11)。