统计学习方法|K近邻法

本文详细介绍了k近邻算法,包括k近邻模型的构成要素:距离度量、k值选择和分类决策规则。重点讲解了k值对算法的影响,以及如何通过kd树优化k近邻搜索效率。k近邻法是一种基本的分类与回归方法,其模型基于训练数据集对特征空间的划分。
摘要由CSDN通过智能技术生成

1.k近邻算法

  k近邻算法简单、直观给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类.下面先叙述k近邻算法,然后再讨论其细节。

1.1k近邻算法

在这里插入图片描述
  近邻法的特殊情况:k=1情形,称为最近邻算法.对于输入的实例点(特征向量) x x x,最近邻法将训练数据集中与 x x x最邻近点的类作为 x x x的类。

1.2k近邻模型

  k近邻法使用的模型实际上对应于对特征空间的划分.模型由三个基本要素——距离度量、k值的选择和分类决策规则决定
  k近邻法中, 当训练集、距离度量(如欧氏距离)、k值及分类决策规则(如多数表决)确定后,对于任何一个新的输入实例,它所属的类唯一的确定.这相当于根据上述要素将特征空间划分为一些子空间,确定子空间里的每个点所属的类,这一事实从最近邻算法中可以看得很清楚。
  特征空间中,对每个训练实例点 x i x_i xi,距离该点比其他点更近的所有点组成个区域,叫作单元 (ce11)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值