回归预测 | MATLAB实现CNN-BiLSTM(卷积双向长短期记忆神经网络)多输入单输出

回归预测 | MATLAB实现CNN-BiLSTM(卷积双向长短期记忆神经网络)多输入单输出

效果一览

1
2
3

基本介绍

提出一种同时考虑时间与空间因素的卷积-双向长短期记忆(CNN-BiLSTM)模型,将具有空间局部特征提取能力的卷积神经网络(CNN)和具有能同时考虑前后方向长时间信息的双向长短期记忆(BiLSTM)相结合,将其用于预测更能体现随时空变化不断波动的交通流量。

研究回顾

  • 目前已有大量关于交通流量预测的研究成果,早期的方法有传统线性预测法,线性预测方法简单易操作,但不能很好地反映不规律的交通流状态,为适应不断波动的交通流,又出现了传统非线性预测方法。后随着计算机技术的发展以及人们对准确实时交通的掌握,出现了现代智能预测方法,如基于机器学习和深度学习的预测方法。由于单个方法会出现或多或少的缺陷,近些年出现了组合预测方法,该方法是将不同预测方法组合,弥补单个预测方法的缺点,以达到更好的预测效果。
  • A估算了无法获得交通数据的交通网络中所有路段的交通流量,但只能预测后短时交通流。
  • D将时间序列分析问题转化为图像分析任务,提出的模型具有预测路网不完整流量数据的能力,但这些深层网络具有复杂的架构,且可解释性较弱。
  • H分层时间记忆具有作为短期交通流量预测的有效工具潜力,其效果与LSTM相当,且在交通流量分布发生变化时得到改善,但不能很好地从模型输出中检测异常流量,并将其用于推断异常事件的存在。
  • C将机器学习算法与统计模型相继连接,通过ARIMA分析对其进行后处理,从而显著提高预测的准确性,局限性在于机器学习算法只考虑了最简单的传统神经网络。
  • M等将神经网络和模糊逻辑的互补功能相结合,在短期交通流量预测上取得了令人满意的成绩。
  • L等提出了一种基于SAE模型提取交通流抽象和潜在特征的方法,但当交通流量较小时,观察流量与预测流量之间的微小差异会导致较大的相对误差。

程序设计

模型结构

该模型由输入层、CNN层、BiLSTM 层、全连接层和输出层组成,CNN层由卷积层和最大池化层堆叠组成,BiLSTM层由一层BiLSTM堆叠成,分别在CNN层和BiLSTM 层的末尾加上Dropout层随机丢弃节点,以防止过拟合。LSTM模型解决了循环神经网络RNN的长期依赖问题,独特的“门”结构能够避免梯度爆炸和梯度消失,且具有长时记忆能力强的优点。BiLSTM在具备LSTM优势的同时,还能在时间维度上考虑前向和后向的双向时间序列信息,预测更加全面准确。CNN适合提取局部空间特征,BiLSTM兼顾双向时间序列信息结合,可以从时空特性上更周全地分析交通流量数据,使预测结果的拟合度更高。

4
5
6
7
8
9
10

学习总结

针对交通流量序列存在的时空相关性等特征,文中提出了一种结合CNN与BiLSTM 各自优点的CNN-BiLSTM 模型。CNN-BiLSTM 模型通过CNN和LSTM分别提取空间和时间特征,通过实例验证分析表明:相比于其他基准模型,文中的模型能够较好地适应不断波动的交通流量数据,早高峰和晚高峰预测的稳定性和精度均较高。

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127281969?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/127261869?spm=1001.2014.3001.5502
[3] https://blog.csdn.net/kjm13182345320/article/details/127179100?spm=1001.2014.3001.5502
[4] https://download.csdn.net/download/kjm13182345320/85476987?spm=1001.2014.3001.5503

结合CNN、Bi-LSTM和Attention机制构建网络入侵检测系统是一个复杂的任务,涉及到数据预处理、模型架构设计、训练与优化等个方面。首先,数据预处理是至关重要的步骤,需要对网络流量数据进行清洗、标准化和特征提取,以便于模型能够更好地学习和泛化。 参考资源链接:[基于CNN-Bi-LSTM-Attention的网络入侵检测开发](https://wenku.csdn.net/doc/2eo076i1dn?spm=1055.2569.3001.10343) 在模型架构设计方面,CNN层可以用来提取网络流量数据中的空间特征,而Bi-LSTM层则负责处理时间序列数据,捕捉数据之间的依赖关系。在模型的输出层加入Attention机制,可以帮助网络集中注意力于那些对于检测入侵最为关键的特征,提升检测精度。 具体构建模型时,可以首先使用CNN层对网络数据进行特征提取,然后通过Bi-LSTM层处理序列特征,最后应用Attention机制聚焦重要特征。在训练过程中,为了提高模型的泛化能力,可以采用正则化技术、dropout等方法防止过拟合,并采用如Adam、RMSprop等自适应学习率的优化算法来加速训练过程。 在算法优化方面,除了基本的模型参数调整,还需要考虑如何高效地实现Bi-LSTM和Attention层的计算。例如,可以采用一些高效的序列处理技巧如时间卷积网络(TCN)来替代传统LSTM,或者使用分层注意力机制来进一步提升模型性能。 此外,实际部署时还需要关注模型的运行效率和资源消耗,因此模型压缩、剪枝等优化策略也是必要的。开发这样的系统,除了对深度学习有深刻理解,还需要对网络安全有深入的了解,才能构建出既高效又实用的网络入侵检测系统。如果您希望深入了解这一领域并解决实际问题,建议参阅《基于CNN-Bi-LSTM-Attention的网络入侵检测开发》这份开发笔记,它提供了实战案例和详细的技术分析,帮助您从理论到实践全面掌握网络入侵检测系统的设计与优化。 参考资源链接:[基于CNN-Bi-LSTM-Attention的网络入侵检测开发](https://wenku.csdn.net/doc/2eo076i1dn?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值