时序预测 | Python实现LSTM-Attention-XGBoost组合模型电力需求预测

这篇博客介绍了如何利用Python实现LSTM-Attention-XGBoost组合模型进行电力需求预测。内容包括预测效果、基本描述、程序设计思路,如特征选择、异常值处理和模型构建,并探讨了时间序列分析中的平稳性概念。同时,提供了相关参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时序预测 | Python实现LSTM-Attention-XGBoost组合模型电力需求预测

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本描述

该数据集因其每小时的用电量数据以及 TSO 对消耗和定价的相应预测而值得注意,从而可以将预期预测与当前最先进的行业预测进行比较。使用该数据集可以探讨以下问题:
负荷曲线和边际供给曲线如何出现?
哪些天气测量和城市对电力需求、价格和发电能力影响最大?
我们能否改进 TSO 的 24 小时提前预报?
我们能否比 TSO 更好地预测一天中不同时间的电价?
我们可以预测日内价格或每

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值