时序预测 | Python实现LSTM-Attention-XGBoost组合模型电力需求预测 目录 时序预测 | Python实现LSTM-Attention-XGBoost组合模型电力需求预测 预测效果 基本描述 程序设计 参考资料 预测效果 基本描述 该数据集因其每小时的用电量数据以及 TSO 对消耗和定价的相应预测而值得注意,从而可以将预期预测与当前最先进的行业预测进行比较。使用该数据集可以探讨以下问题: 负荷曲线和边际供给曲线如何出现? 哪些天气测量和城市对电力需求、价格和发电能力影响最大? 我们能否改进 TSO 的 24 小时提前预报? 我们能否比 TSO 更好地预测一天中不同时间的电价? 我们可以预测日内价格或每