Python 实现 LSTM 和 XGBoost 组合模型来预测 Apple Inc.(AAPL)股票价格

目录

1. 项目概述... 1

项目预测效果图... 1

2. 数据获取... 5

3. 特征工程... 5

4. LSTM 模型设计... 6

5. LSTM 预测与特征生成... 7

6. XGBoost 模型设计... 7

7. 结果评估与可视化... 8

8. 整合代码和主脚本... 8

9. 总结... 11

10. 进一步的改进... 11

以下是一个详细的示例,展示如何使用 Python 实现 LSTM XGBoost 组合模型来预测 Apple Inc.AAPL)股票价格。该项目涵盖了数据准备、特征工程、模型设计、超参数调整和预测结果的可视化。

1. 项目概述

本项目使用 LSTM(长短期记忆网络)和 XGBoost(极限梯度提升树)相结合的方法进行股票价格预测。通过组合这两种模型的优点,提高预测的准确性。具体步骤包括:

  • 数据获取和准备
  • 特征工程
  • LSTM 模型设计与训练
  • 使用 LSTM 的输出作为特征训练 XGBoost
  • 结果评估与可视化

项目预测效果图

2. 数据获取

使用 yfinance 库获取 AAPL 的历史股票价格数据。

python复制代码

import yfinance as yf

import pandas as pd

# 获取 Apple Inc. 股票数据

ticker = 'AAPL'

data = yf.download(ticker, start='2015-01-01', end='2024-01-01')

# 数据预处理

data = data[['Close']]

data['Return'] = data['Close'].pct_change()

data.dropna(inplace=True)

data.head()

3. 特征工程

对时间序列数据进行特征工程,包括生成滑动窗口特征。

python复制代码

import numpy as np

# 创建滑动窗口特征

def create_dataset(data, time_step=1):

    X, y = [], []

    for i in range(len(data) - time_step - 1):

        a = data[i:(i + time_step), 0]

        X.append(a)

        y.append(data[i + time_step, 0])

    return np.array(X), np.array(y)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值