辅导文章
模型描述
碳排放权交易作为一种重要的环境政策工具在全球范围内得到了广泛应用。如何运用深度学习等技术提高碳排放权价格预测能力是一个重要问题,基于此,提出一种Transformer-LSTM 多因素碳排放权交易价格预测的深度学习模型,以碳排放权交易价格为例,旨在探索运用深度学习的方法,预测湖北省碳排放权交易价格的变动趋势。输入Transformer-LSTM 模型进行预测,同时运用支持向量机回归(SVR)、多层感知机(MLP)、长短时记忆网络(LSTM)、Transformer 模型进行预测与对比。通过在历史数据上进行训练,实验结果表明,Transformer-LSTM 模型得到的预测价格与湖北省碳排放权交易价格(HBEA)的实际价格更为吻合,在平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)和评估指标上也有更佳的表现。