论文辅导 | 基于Transformer-LSTM模型的多因素碳排放权交易价格预测

辅导文章

在这里插入图片描述

模型描述

碳排放权交易作为一种重要的环境政策工具在全球范围内得到了广泛应用。如何运用深度学习等技术提高碳排放权价格预测能力是一个重要问题,基于此,提出一种Transformer-LSTM 多因素碳排放权交易价格预测的深度学习模型,以碳排放权交易价格为例,旨在探索运用深度学习的方法,预测湖北省碳排放权交易价格的变动趋势。输入Transformer-LSTM 模型进行预测,同时运用支持向量机回归(SVR)、多层感知机(MLP)、长短时记忆网络(LSTM)、Transformer 模型进行预测与对比。通过在历史数据上进行训练,实验结果表明,Transformer-LSTM 模型得到的预测价格与湖北省碳排放权交易价格(HBEA)的实际价格更为吻合,在平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)和评估指标上也有更佳的表现。

在这里插入图片描述

预测效果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值